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I. Background and Scope

To fulfill its mission of protecting, promoting, and advancing public health, the Food and
Drug Administration’s (FDA’s) Center for Drug Evaluation and Research (CDER), in
collaboration with the Center for Biologics Evaluation and Research (CBER) and the
Center for Devices and Radiological Health (CDRH), including the Digital Health Center
of Excellence (DHCOoE), is publishing this document to facilitate a discussion with
stakeholders on the use of artificial intelligence (Al)' and machine learning (ML)? in
drug development,3# including in the development of medical devices intended to be
used with drugs, to help inform the regulatory landscape in this area.

FDA helps to ensure that drugs are safe and effective while facilitating innovations in
their development. Recent, rapid technological innovations in data collection and
generation tools, combined with robust information management and exchange systems
and advanced computing abilities, may transform the way drugs are developed and
used (ElZarrad, Lee, Purcell, & Steele, 2022). This evolving ecosystem presents
unique opportunities and challenges, and FDA is committed to working across its
medical product centers with partners domestically and internationally to ensure that the
full potential of these innovations is realized for the benefit of the public.

Developers, manufacturers, regulators, academic groups, and other stakeholders are
working to develop a shared understanding of where and how specific innovations, such
as Al and ML, can best be used throughout the drug development process. FDA is
publishing this discussion paper as part of a multifaceted approach to enhance mutual
learning and to establish a dialogue with FDA stakeholders on this topic. Al can
generally be described as a branch of computer science, statistics, and engineering that
uses algorithms or models to perform tasks and exhibit behaviors such as learning,
making decisions, and making predictions.® ML is considered a subset of Al that allows
ML models to be developed by ML training algorithms through analysis of data, without
models being explicitly programmed.® Additionally, there are a variety of ML methods
and different types of algorithms that may be utilized in a given context. For purposes
of this document, Al and ML will be referenced together as AlI/ML, and references to

"Words and phrases in bold italics are defined in the Glossary.

2 There are multiple definitions for Al and ML, and the Glossary includes several definitions from federal
legislation and agencies.

3 For purposes of this discussion paper, all references to drug or drugs include both human drugs and
biological products.

4 FDA is focusing this discussion paper on drug development. However, many of the Al/ML scientific and
regulatory science principles outlined in this document may be applicable across all medical products,
including in the development of medical devices intended to be used with drugs (including, but not limited
to, combination products, companion devices, and complementary devices). Some medical devices
intended to be used with drugs are intended for use only in clinical investigations; others are intended to
be marketed for use outside of clinical investigations. Examples include medical devices that help identify
side effects of drugs as well as medical devices that assist in drug dosing.

5 See IMDRF/AIMD WG/N67 Machine Learning-enabled Medical Devices: Key Terms and Definitions,
final document, May 6, 2022. https://www.imdrf.org/documents/machine-learning-enabled-medical-
devices-key-terms-and-definitions

6 Ibid.
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drug development and the drug development process include a wide scope of activities
and phases, including manufacturing and postmarket drug safety monitoring, among
others.”8

This discussion paper, which considers the application of Al/ML in the broad context of
the drug development process, is not FDA guidance or policy and does not endorse a
specific AlI/ML use or approach in drug development. Rather, this discussion paper is
an initial communication with stakeholders, including academic groups, researchers,
and technology developers, that is intended to promote mutual learning and discussion.
It is particularly beneficial for those new to drug development and human subjects
research, to recognize some of the initial thinking and considerations involved with
utilizing these technologies, including having familiarity with FDA’s current activities,
initiatives, practices, and potentially applicable regulations. FDA is soliciting feedback
on the opportunities and challenges with utilizing AI/ML in the development of drugs, as
well as in the development of medical devices intended to be used with drugs. This
feedback will provide an additional resource to help inform the regulatory landscape in
this area.

In this discussion paper, three main topics are discussed:

e Landscape of current and potential uses of AlI/ML: FDA recognizes the
potential for Al/ML to enhance drug development in many ways, including to help
bring safe and effective drugs to patients faster; provide broader access to drugs
and thereby improve health; increase the quality of manufacturing; enhance drug
safety; and develop novel drugs and drug classes, as well as personalized
treatment approaches. Section Il provides examples of the use of AI/ML to
highlight the potential impact of AI/ML across the drug development process and
includes a brief description of FDA’s experience with Al/ML in drug development.
The list of examples in this section is not comprehensive of all Al/ML uses, and it
includes uses where FDA oversight may or may not be applicable. The purpose
of this section is to promote shared learning and to identify areas where future
regulatory clarity may be helpful.

o Considerations for the use of AI/ML: FDA is also aware of the potential
concerns and risks with emerging innovations such as Al/ML and will share initial
considerations and solicit feedback on how to help ensure the responsible
utilization of AI/ML in drug development. Section Ill briefly describes several key
efforts to develop general principles, standards, and practices for the use of
Al/ML across diverse applications and then explores the principles and
considerations that may be particularly applicable when using Al/ML for drug
development activities. FDA understands that Al/ML use in drug development is

7 See The Drug Development Process, January 2018. https://www.fda.gov/patients/learn-about-drug-and-
device-approvals/drug-development-process

8 In this discussion paper, the topic of clinical investigations focuses on the drug development process,
however, many other activities and phases included as part of the drug development process may also be
part of the development process for other medical products; see footnote 4.
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diverse, and careful assessments that consider the specific context of use are
needed. Taking a risk-based approach to evaluate and manage the use of Al/ML
can help facilitate innovations and protect public health.

¢ Next steps and stakeholder engagement: FDA is interested in mutual
opportunities to learn and engage with all stakeholders to establish a shared
understanding of Al/ML systems and their rapidly evolving potential uses and
considerations in drug development. As part of this ongoing effort, FDA
welcomes feedback on this discussion paper and any Al/ML-related issues
pertaining to drug development. Specifically, to initiate a broader dialogue with
stakeholders, Section Il includes several key questions to which interested
parties can provide perspectives and Section IV outlines opportunities for future
engagement.

Il. Current and Potential Uses of AI/ML in the Drug Development Process

This section provides a high-level overview of the diverse and evolving uses of Al/ML
being employed throughout the drug development process. These examples are not
comprehensive of all AI/ML uses and include uses where FDA oversight may or may
not be applicable.® Additionally, while some of the uses of Al/ML described in this
section may also have utility in clinical practice, this paper is focused on uses of Al/ML
in the drug development process. The purpose of this section is to promote shared
learning and to identify areas where future FDA regulatory clarity may be beneficial.

Although the overall drug development process is an iterative continuum of activities
and not strictly linear in nature, for simplicity, this section utilizes different phases of
drug development to highlight several uses of Al/ML, ranging from drug discovery and
clinical research to postmarket safety surveillance and advanced pharmaceutical
manufacturing. The section also includes references to how Al/ML is being applied to
real-world data (RWD) and data from digital health technologies (DHTSs) in support
of drug development. Some of the general challenges and considerations with utilizing
Al/ML in different drug development use cases are discussed in Section lil.

A. Drug Discovery

Early drug discovery is one of the areas with significant interest and activity in utilizing
AlI/ML. Included below is a brief discussion of the current and potential uses of Al/ML
for drug target identification, selection, and prioritization, as well as compound
screening and drug design in drug discovery.

9 The examples listed were not necessarily submitted to FDA for review or approval and are not meant to
suggest an endorsement of any specific approach. The FDA does not endorse any particular use of
Al/ML.



114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

1. Drug Target Identification, Selection, and Prioritization

The early stages of drug development generally rely on the initial identification of a
suitable biological target for drug candidates. As a starting point, the process of
identifying biological targets and elucidating disease relationships can utilize Al/ML to
analyze and synthesize significant amounts of information from existing scientific
research, publications, and other data sources. The growth of available genomic,
transcriptomic, proteomic, and other data sources from healthy persons and those with
a specific disease of interest provide a significant opportunity to inform biological target
selection. These datasets are often complex and originate from disparate sources,
which can be well-suited for the utilization of AI/ML approaches (Fumagalli et al., 2023).
Building from existing validated data, AI/ML can be applied to mine and analyze these
large multi-omics and other datasets to provide information on the potential structure
and function of biological targets to predict their role in a disease pathway (Vamathevan
et al., 2019; Weissler et al., 2021). While early target identification and prioritization is a
critical step where AI/ML could help improve the efficiency and effectiveness of drug
development, it is important to validate the role of the biological target in the disease of
interest through subsequent studies (Fumagalli et al., 2023).

2. Compound Screening and Design

The discovery of potential drug candidates that modify the function of the identified
biological targets of interest generally involves significant in silico or experimental
screening of compound libraries, followed by subsequent refinement of a compound’s
specificity and selectivity for the biological target. In the area of compound screening,
potential Al/ML uses include predicting the chemical properties and bioactivity of
compounds and predicting efficacy and potential adverse events based on the
compound’s specificity and affinity for a target (Chan, Shan, Dahoun, Vogel, & Yuan,
2019; Schneider et al., 2020).

AI/ML approaches used to further elucidate drug-target interactions could also help
provide predictions about classes of drugs potentially interacting with the same targets
or having a similar mechanism of action, which may help predict the toxicity of a
molecule based on specific known features. This strategy can help guide drug
repurposing efforts that could utilize previously characterized compounds. Drug
repurposing efforts utilizing AI/ML can also potentially benefit from the increased
availability of suitable RWD from a variety of sources (e.g., electronic health records
(EHRs), registries, and DHTSs) to identify previously unknown effects of drugs on
disease pathways (Z. Liu et al., 2022).

Finally, AI/ML could accelerate advances in de novo drug design (Mouchlis et al., 2021).
For example, AI/ML may be applied to help predict the 3D structure of target proteins,
informing chemical synthesis and the potential effect of a drug candidate on the target,
including predicting affinity and potential toxicity (Chan et al., 2019; Jumper et al., 2021;
Vamathevan et al., 2019). It is worth noting that one must be cautious with the use of
AI/ML in 3-D structure prediction, as many proteins that are developed for
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pharmaceutical applications are codon optimized (with many synonymous mutations
incorporated), the impact of which on protein structure is still an area of active research
(Fumagalli et al., 2023; Jumper et al., 2021).

B. Nonclinical Research

Nonclinical research refers to in vitro and in vivo studies and is designed to further
advance potential therapeutics towards clinical research in humans. Nonclinical
studies, in support of new drug development, can be conducted at all phases of
development: prior to clinical studies, in parallel with clinical development, and even in
postmarketing environments. Data from pharmacokinetic, pharmacodynamic, and
toxicologic studies conducted in animals; exploratory in vitro and in vivo mechanistic
studies conducted in animal models; organ-on-chip and multi-organ chip systems; and
cell assay platforms may be leveraged using Al/ML (e.g., computational modeling and
simulation techniques) for evaluating toxicity, exploring mechanistic models, and
developing in vivo predictive models (Bulitta et al., 2019; Harrison & Gibaldi, 1977; Hsu
et al., 2014; Mager, Woo, & Jusko, 2009; Shroff et al., 2022).

Pharmacokinetics (PK) describes the time course of drug absorption, distribution,
metabolism, and excretion. Pharmacodynamics (PD) explores the body’s biological
response to drugs. When PK and PD are integrated in a model, the model can describe
how the drug effect will change with time when a certain dose or dosing regimen is
used. Pharmacokinetic/pharmacodynamic (PK/PD) modeling has been used in drug
development for decades and can be applied at both the nonclinical and clinical stages
(Daryaee & Tonge, 2019). Along with the advances in computational tools and
technology and the availability of modeling platforms, use of physiologically-based
pharmacokinetic (PBPK) and physiologically-based PK/PD (PBPK-PD) modeling is also
increasing (Sager, Yu, Ragueneau-Majlessi, & Isoherranen, 2015). There are current
efforts to explore the use of more novel Al/ML algorithms (e.g., artificial neural network
models and tree-based models) for PK/PD modeling. For example, a recurrent neural
network, an ML algorithm commonly used for analyzing time series data, may be used
to complement traditional PK/PD models in the area of highly complex PK/PD data
analysis, and possibly lead to improved accuracy for nonclinical and clinical
applications (Liu et al., 2021).

C. Clinical Research

Clinical research typically involves a series of phases of clinical trials in increasing
numbers of human subjects to assess the safety and effectiveness of a drug. One of
the most significant applications of AI/ML in drug development is in efforts to streamline
and advance clinical research. For example, Al/ML is being utilized to analyze vast
amounts of data from both interventional studies (also referred to as clinical trials) and
non-interventional studies (also referred to as observational studies) to make inferences
regarding the safety and effectiveness of a drug. Additionally, AI/ML has the potential to
inform the design and efficiency of non-traditional trials such as decentralized clinical
trials, and trials incorporating the use of RWD extracted from EHRs, medical claims, or
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other data sources. Al/ML may also have a role in analyzing and interpreting data
collected from DHTs used in clinical studies. Finally, AI/ML could also be used to
improve the conduct of clinical trials and augment operational efficiency. The following
subsections will highlight some of the uses and potential uses of AlI/ML during the
design and conduct of clinical research.

1. Recruitment

AI/ML is increasingly being developed and used to connect individuals to trials for
investigational treatments from which participants may benefit. Specifically, AI/ML is
being used to mine vast amounts of data, such as data from clinical trial databases, trial
announcements, social media, medical literature, registries, and structured and
unstructured data in EHRs, which can be used to match individuals to trials (Harrer,
Shah, Antony, & Hu, 2019). While these algorithms are trained on high volumes of
patient data and enrollment criteria from past trials, it is important to ensure adequate
representation of populations that are likely to use the drug. In the future, these
technologies, if properly validated, may continue to play an increasing role in matching
individuals with investigational treatments.

2. Selection and Stratification of Trial Participants

Enrichment strategies can aid participant selection in clinical investigations designed to
demonstrate the effectiveness of drug and biological products.’ Al/ML has been
explored and used as part of a clinical investigation in the prediction of an individual
participant’s clinical outcome based on baseline characteristics (e.g., demographic
information, clinical data, vital signs, labs, medical imaging data, and genomic data)
(Aerts et al., 2016; Athreya et al., 2019; Dercle et al., 2020; Harrer et al., 2019;
Kawakami et al., 2019). Such predictive models can be used to enrich clinical trials
(e.g., identifying high-risk participants or participants more likely to respond to the
treatment). When these types of Al/ML algorithms are used for patient evaluation and
selection before randomization, it may be possible to reduce variability and increase
study power (Y. Wang, Carter, Li, & Huang, 2022).

In addition to utilization in enrichment strategies, such predictive models can also be
used for participant stratification, for example, if an Al/ML model could predict the
probability of a serious adverse event before an investigational treatment is
administered. Based on their predicted risk for these serious adverse events,
participants can be stratified into different groups and then monitored accordingly (or
excluded depending on predicted severity of the adverse event).

0 See the guidance for industry Enrichment Strategies for Clinical Trials to Support Determination of
Effectiveness of Human Drugs and Biological Products (March 2019).
https://www.fda.gov/media/121320/download
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3. Dose/Dosing Regimen Optimization

AI/ML can be used to characterize and predict PK profiles after drug administration. It
can also be used to study the relationship between drug exposure and response, taking
into consideration confounding factors. These kinds of models can be used to optimize
the dose/dosing regimen selection for a study (Liu et al., 2021; Lu, Deng, Zhang, Liu, &
Guan, 2021). This could potentially include aiding in dose optimization in special
populations where there may be limited data (e.g., rare disease studies, pediatric and
pregnant populations).

4. Adherence

AI/ML can be used to monitor and improve adherence during a clinical trial through
tools, such as smartphone alerts and reminders, eTracking of medication (e.g., smart
pillboxes and tools for visual confirmation) (Mason et al., 2022), and eTracking of
missed clinical visits, which trigger non-adherence alerts. Examples of Al/ML used in
clinical research to improve medication adherence include applications using digital
biomarkers, such as facial and vocal expressivity, to monitor adherence remotely.

5. Retention

Al/ML has the potential to improve the participants’ access to relevant trial information
by enabling tools, such as Al chatbots, voice assistance, and intelligent search. Al/ML
can also be used to reduce the burden for participants by using passive data collection
techniques and by extracting more information from available data generated during
clinical practice or by study activities (Weissler et al., 2021). Additionally, data from
DHTs and other systems can be used to develop patient profiles to potentially predict
dropouts and adverse events to ensure participant retention.

6. Site Selection

Trial operational conduct could also be optimized by utilizing Al/ML to help identify
which sites have the greatest potential for a successful trial and to aid sites in identifying
process gaps. For example, algorithms can be used to evaluate site performance and
to help determine which sites may have a higher risk of running behind schedule based
on data from other trials at that site.

7. Clinical Trial Data Collection, Management, and Analysis

a. Data Collection

DHTs, such as wireless and smartphone-connected products, wearables, implantables,
and ingestibles, are increasingly being used in clinical trials to collect objective,



289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

quantifiable, longitudinal, and continuous physiological data.!" In addition, many of
these DHTs enable the use of Al/ML, either as embedded algorithms within the DHT or
employed upon the data generated after the data are collected from the DHT, and have
been used to predict the status of a chronic disease and its response to treatment
(Stehlik et al., 2020) or to identify novel characteristics of an underlying condition
(Avram et al., 2020). Al/ML can be utilized to analyze the large and diverse data
generated from the continuous monitoring of persons using these technologies. This
could include using Al/ML to aid in the evaluation of multimodal data and composite
measures that may combine individual measures collected through multiple DHTs
(Cohoon & Bhavnani, 2020).

b. Data Management

AI/ML can be used for a range of data cleaning and curation purposes, including
duplicate participant detection and imputation of missing data values (Zhang, Yan, Gao,
Malin, & Chen, 2020), as well as the ability to harmonize controlled terminology
across drug development programs. Use of Al/ML could also significantly enhance data
integration efforts by using supervised and unsupervised learning to help integrate data
submitted in various formats and perform data quality assessments. Additionally, Al/ML
can be used for data curation via masking and de-identification of personal identifiable
information, metadata creation, and search and retrieval of stored data. These
applications can potentially increase data accuracy and improve the speed at which
data are prepared for analyses.

c. Data Analysis

AI/ML has been used to analyze high volumes of diverse and complex RWD extracted
from EHRSs, medical claims, and disease registries, among other sources. Additionally,
the use of AlI/ML in predictive modeling and counterfactual simulation to inform clinical
trial designs is being actively explored. For example, in silico clinical trials utilize
computational modeling and simulation to evaluate drug candidates using a virtual
cohort of simulated participants with realistic variability of traits representing the desired
participant population (Pappalardo, Russo, Tshinanu, & Viceconti, 2019). Al/ML could
be employed in these situations to aid in evaluating a vast number of counterfactual
simulations and to predict trial outcomes before human trials.

At an even more personalized level, AlI/ML can also be used in the context of digital
twins of patients, an emerging method that could potentially be used in clinical research.
To create digital twins of patients, AI/ML can be utilized to build in silico representations
or replicas of an individual that can dynamically reflect molecular and physiological
status over time (European Medicines Agency, 2022; Laubenbacher, Sluka, & Glazier,
2021; Schuler et al., 2021). In comparison to a participant in a clinical trial that received
an investigational treatment, the digital twin could potentially provide a comprehensive,

1 See the draft guidance for industry, investigators, and other stakeholders Digital Health Technologies
for Remote Data Acquisition in Clinical Investigations (December 2021). When final, this guidance will
represent FDA’s current thinking on this topic. https://www.fda.gov/media/155022/download
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longitudinal, and computationally generated clinical record that describes what may
have happened to that specific participant if they had received a placebo.

8. Clinical Endpoint Assessment

Clinical endpoint assessment is a key part of evaluating safety and efficacy of medical
interventions in clinical trials. Al/ML-enabled algorithms could detect clusters of signs
and symptoms to identify a potential safety signal, as well as help detect cases with
safety issues in real time (Pierce et al., 2017; Routray et al., 2020). Al/ML could be
used to assist in the assessment of outcomes captured from diverse sources (e.g.,
DHTs, social media) during a clinical trial, including those consisting of large amounts of
data for which manual review may be impractical.

D. Postmarketing Safety Surveillance

For purposes of this paper, pharmacovigilance (PV) refers to the science and activities
related to the detection, assessment, understanding, and prevention of adverse events
or any other drug-related problems (including medication errors and product quality
issues).'? Postmarketing safety surveillance, or PV activities in the post-approval
period, includes postmarketing safety reporting of adverse events associated with use
of human drug and biological products. An individual case safety report (ICSR) is used,
as applicable, for the postmarketing reporting of adverse events to FDA and serves as
an important data source of potential drug safety issues for postmarket safety
surveillance. The clinical information in ICSRs can include suspect product or products,
and temporal information related to use of the product and occurrence of the adverse
event(s) in the patient’s medical history, clinical course, and outcome. Complete and
accurate reporting of ICSRs is critical to the understanding of a drug’s safety profile.
For reasons including increases in ICSR volume, Al/ML applications are being explored
to help process and evaluate ICSR submissions within regulatory agencies (Ball & Dal
Pan, 2022; Bate & Hobbiger, 2021).

1. Case Processing

There are potential opportunities to use Al/ML for automation during ISCR processing.
The number and complexity of data sources of adverse events for ICSRs have
increased, including from spontaneous reports, clinical trials, EHRs, social media,
phone calls, emails, literature, patient registries, claims data, and post-approval safety
studies (Beninger, 2020). The use of Al/ML to detect information from source
documents could help identify adverse events for ICSR submission. For instance, the
use of Al/ML to detect and evaluate drug event associations from literature and to
screen social media for adverse events has been explored (Comfort, Dorrell, Meireis, &

2 See the guidance for industry Good Pharmacovigilance Practices and Pharmacoepidemiologic
Assessment (March 2005). Accessed September 30, 2022. https://www.fda.gov/media/71546/download
See also, Council for International Organizations of Medical Sciences (CIOMS) Pharmacovigilance
definition. Accessed September 29, 2022. https://cioms.ch/pharmacovigilance/
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Fine, 2018; Negi, Pavuri, Patel, & Jain, 2019; S. V. Wang et al., 2017; W. Wang et al.,
2011).

After an adverse event is identified from a data source, Al/ML could be used for case
validity, case prioritization, duplicate check, coding, and quality control. The use of
AI/ML can help identify whether a case is a valid case, which includes determining
whether a case contains the minimum reporting requirements, such as an identifiable
patient, suspect drug or biological product, adverse event(s), and identifiable reporter
(Abatemarco et al., 2018; Schmider et al., 2019). During case intake, to assist in the
prioritization of cases, AI/ML has been used to classify adverse events by expectedness
(whether an adverse event is known and in the product labeling) (Abatemarco et al.,
2018; Routray et al., 2020). Automated duplicate checks using Al/ML are being
conducted to identify whether the case is a true duplicate, a follow up version of a prior
case, or a new case (Kassekert 2022). Another area in which Al/ML has been applied
is the coding of adverse events described in ICSRs to structured medical dictionary
terms and for quality control purposes (Ghosh 2020).

2. Case Evaluation

Adverse event cases undergo clinical assessment. Case evaluation includes assessing
the possibility of a causal relationship between the drug and adverse event, as well as
assessing the outcome of the case. An Al model was developed based on relevant
features used in causality assessments; it was trained, validated, and tested to classify
cases by the probability of a causal relationship between the drug and adverse event
(Comfort et al., 2018). Al/ML has also been applied to determine seriousness of the
outcome of ICSRs (Routray, et al., 2020), which not only supports case evaluation, but
also the timeliness of individual case submissions that require expedited reporting.

3. Case Submission

Generally, the final step after case processing is the submission of ICSRs. Al/ML
algorithms have been used to automate reporting rules for submission of ICSRs to FDA.
The reporting of ICSRs is required on an individual basis, as well as in aggregate
(Ghosh et al., 2020). The aggregate reporting of adverse events generally involves the
compilation of safety data for a product that is submitted at regular time intervals as
specified. AlI/ML can be used to develop aggregate reports that include multiple
adverse events for particular products that occur within a time period for reporting
purposes (Lewis & McCallum, 2020).

E. Advanced Pharmaceutical Manufacturing'?

A critical aspect of drug development includes the methods, facilities, and controls used
in manufacturing, processing, packing, and holding of a drug to help ensure that the

3 The examples in this section are based on the review of general published information that projects or
forecasts how Al/ML may be currently used in the pharmaceutical manufacturing space. In the continued
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drug meets the requirements of safety and effectiveness, has the identity and strength it
is represented to possess, and meets quality and purity characteristics. Advanced
analytics leveraging Al/ML in the pharmaceutical manufacturing industry offers many
possibilities, including, but not limited to, enhancing process control, increasing
equipment reliability and throughput, monitoring early warnings or signals that the
manufacturing process is not in a state of control, detecting recurring problem clusters,
and preventing batch losses. The use of Al/ML to support pharmaceutical
manufacturing can be deployed together with other advanced manufacturing
technologies (e.g., process analytical technology, continuous manufacturing) to achieve
the desired benefits. AlI/ML is an enabler for the implementation of Industry 4.0, a term
that refers to the fourth industrial revolution that brings together rapidly evolving
technologies, and could result in a well-controlled, hyper-connected, digitized
ecosystem and pharmaceutical value chain for the manufacturer (Arden et al., 2021).
AI/ML could also be used to improve the reliability of the manufacturing supply chain
through forecasting product demand, analyzing production schedules, estimating and
mitigating the impact of potential disruptions, and optimizing inventory. Use of Al/ML-
based approaches in pharmaceutical manufacturing can be broadly grouped into the
areas outlined below that cover the entire drug manufacturing life cycle, from design to
commercial manufacturing.

1. Optimization of Process Design

Digital twins can also be used in process design optimization. In this context, a digital
twin of a process is a digital replica of the physical process used to better understand,
analyze, predict, and optimize process performance. The digital twin could be
especially beneficial for analyzing manufacturing processes characterized by a limited
amount of development data, where Al/ML models could potentially leverage prior
knowledge of the product and process (e.g., from previous studies, development
programs, and scientific literature) to more quickly identify the optimal processing
parameters, thus reducing design time and waste.

2. Advanced Process Control

Process controls have been implemented in pharmaceutical manufacturing for several
decades. Traditional process controls maintain input process parameters at set points,
but are not capable of simultaneously changing multiple input parameters to maintain
the output parameters at desired levels to optimize the process. On the other hand,
advanced process control (APC) allows dynamic control of the process to achieve a
desired output (Huang et al., 2021). Al/ML techniques such as neural networks, with
real-time process data as inputs, can be used to implement APC. These methods can

spirit of FDA'’s recent engagement through the Quality Metrics Feedback Program and CDER'’s Emerging
Technology Program, FDA has been able to solicit valuable feedback demonstrated by industry
interactions on several Al/ML use cases in the pharmaceutical manufacturing space, such as optimal risk-
based supply chain modeling, business forecasting, process optimization, application of natural language
processing (NLP) algorithms for complaints reduction, use of predictive analytics for non-conformance
(NC) reduction, and corrective and preventive action (CAPA) effectiveness.
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also be used to develop process controls that can predict whether a process is
performing under a state of control by using Al/ML tools in combination with real-time
sensor data, including, in conjunction with smart monitoring of production lines, to
improve existing manufacturing line efficiency and output. In the near term, APC
approaches that combine physics and chemistry knowledge with Al/ML techniques are
expected to be increasingly adopted and have already been reported by several
pharmaceutical manufacturers (National Academies of Sciences, 2021). In these APC
applications, high quality model inputs inform process understanding and, model
structure. These robust inputs, when combined with data-driven modeling, allow
derivation of model parameters. These models leverage data required for model
development while improving model robustness.

3. Smart Monitoring and Maintenance

Manufacturing processes can be automated and monitored in real time, leading to more
efficient inventory management with shorter lead times and increased production
output, without impacting product quality. Al/ML methods can be used to monitor
equipment and detect deviations from normal performance that can trigger maintenance
activities, thus reducing process downtime. Another example is the use of computer
vision-based quality control that uses images (e.g., images of packaging, labels, or
glass vials) that are analyzed by Al/ML-based software to detect deviations and to
ensure images match the requirements of a given quality attribute of a product.
Augmenting human visual inspection of drug products and packaging with such Al/ML-
based methods can improve the accuracy and efficiency of visual inspection controls.

4. Trend Monitoring

AlI/ML can be used in many ways to make manufacturing more effective and efficient
with faster output, less waste, more informed decision-making, and enhanced quality
control. Current practice for the analysis of deviations in the process is primarily done
by quality personnel and relevant subject matter experts. Al/ML could be utilized to
assist in examination of deviation reports that mostly contain large volumes of data or
text to analyze manufacturing-related deviation trends, cluster problem areas, and
prioritize areas for proactive continual improvement. This offers the advantage of
expediting the process of identifying root causes, as solely manual review of deviation
trends can be very time-consuming. Al/ML methods integrated with process
performance (Ppk) and process capability (Cpk) metrics can be used to proactively
monitor manufacturing operations for trends and out-of-control events, and predict
thresholds for triggering CAPA effectiveness evaluations.

F. FDA Experience with AI/ML for Drug Development
FDA recognizes the increased use of Al/ML throughout the drug development life cycle
and its potential to accelerate the development of safe and effective drugs. Al/ML is

increasingly integrated in areas where FDA is actively engaged, including clinical trial
design, DHTs, and RWD analytics. Over the last few years, FDA has seen a rapid

12



502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

growth in the number of submissions that reference AI/ML. Submissions across drug
and biological product applications that include Al/ML have increased over the last few
years to more than 100 submissions in 2021 (Q. Liu et al., 2022). These submissions
cut across a range of therapeutic areas, and the uses of Al/ML within the submissions
cover the many different areas of the drug development process highlighted in this
section, from drug discovery and clinical trial enrichment to endpoint assessment and
postmarket safety surveillance. Inclusion of Al/ML in the clinical development/research
phase represents the most common stage for AI/ML uses in submissions.

One of the ways FDA has been supporting the development of innovative and robust
AI/ML is through the establishment of the CDER Al Steering Committee (AISC), which
coordinates efforts around Al/ML uses across therapeutic development. Leveraging its
commitment to advancing innovative approaches and promoting collaborative efforts
across the Agency, CDRH, including the DHCoE, have provided consults for drug
submissions that involve AlI/ML, and are developing a framework for Al/ML-based
devices, including predetermined change control plans for devices incorporating
Al/ML," as well as a foundation for Good Machine Learning Practices for medical
device development.' In addition, FDA has organized various workshops'®'” and held
a Patient Engagement Advisory Committee (PEAC) meeting on DHT and Al/ML-related
topics'® and has fostered regulatory science research, including on robustness, user-
centered transparency, and bias identification and management, through external
academic and clinical partnerships to evaluate the safety and effectiveness of emerging
Al/ML products.®

Additionally, CDER has developed the Innovative Science and Technology Approaches
for New Drugs (ISTAND) Pilot Program, which is designed to expand drug
development tool (DDT) types included in the DDT qualification programs, including
tools that leverage DHTs. Applications of AI/ML may represent novel DDTs or could be
used to aid in the interpretation and analysis of traditional DDTs (such as biomarkers
or clinical outcome assessments), potentially speeding novel therapeutics to patients

4 Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (Al/ML)-
Based Software as a Medical Device (SaMD) — Discussion Paper and Request for Feedback, April 2019.
https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-
Learning-Discussion-Paper.pdf

5 Good Machine Learning Practice for Medical Device Development: Guiding Principles, October 2021.
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-
medical-device-development-quiding-principles

16 See the Virtual Public Workshop — Transparency of Artificial Intelligence/Machine Learning-enabled
Medical Devices, October 14, 2021. https://www.fda.gov/medical-devices/workshops-conferences-
medical-devices/virtual-public-workshop-transparency-artificial-intelligencemachine-learning-enabled-
medical-devices

17 See the Public Workshop — Evolving Role of Atrtificial Intelligence in Radiological Imaging, February
25-26, 2020. https://www.fda.gov/medical-devices/workshops-conferences-medical-devices/public-
workshop-evolving-role-artificial-intelligence-radiological-imaging-02252020-02262020

8 See the Patient Engagement Advisory Committee Meeting Announcement, October 22, 2020.
https://www.fda.gov/advisory-committees/advisory-committee-calendar/october-22-2020-patient-
engagement-advisory-committee-meeting-announcement-10222020-10222020

9 See CERSI research projects, October 2022. https://www.fda.gov/science-research/advancing-
regulatory-science/cersi-research-projects
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by enhancing the evidence available for decision-making.?° In the area of model-
informed drug development (MIDD), FDA’s CDER and CBER have established a MIDD
Pilot Program to facilitate the development and application of exposure-based,
biological, and statistical models derived from nonclinical and clinical data sources.?’ In
the context of MIDD, AlI/ML could be employed to help improve clinical trial simulations,
optimize dose selection or estimations, or enhance predictive or mechanistic safety
evaluations.

In the area of postmarket safety surveillance, the FDA’s Sentinel Initiative, including
CDER'’s Sentinel System,?? CBER’s Biologics Effectiveness and Safety (BEST)
system,?® and CDRH'’s National Evaluation System for health Technology (NEST)?*
efforts, are exploring Al/ML approaches to improve existing systems. The FDA outlined
its goals for using linked claims and EHR data supported by advanced analytics in the
5-year Sentinel System strategic plan.?®> The Sentinel System Innovation Center has
outlined a four-pronged approach to implement this plan by incorporating emerging data
science innovations and EHR data for medical product safety surveillance: (1) data
infrastructure, (2) feature engineering, (3) causal inference, and (4) detection analytics
(Desai et al., 2021). Examples of Al/ML applications in this approach include natural
language processing (NLP) and automated feature extraction from unstructured EHR
clinical notes for computable phenotyping and improved confounding adjustment from
EHR-based variables using advanced statistical and ML approaches, such as
algorithms created to enhance performance or “Super Learner” and targeted maximum
likelihood estimation (Naimi & Balzer, 2018).

CBER’s BEST system is designed to provide better data sources, methods, tools,
expertise, and infrastructure to conduct surveillance and epidemiological studies.?® Part
of this program is an effort to use Al/ML methods to analyze EHRs to predict or better
understand adverse events associated with the use of biological products and other
products that CBER regulates. This work may also enhance FDA’s understanding of
the use of AI/ML methods for generating real-world evidence about product efficacy.

CDER is also exploring the application of Al to enhance the evaluation of ICSRs
submitted to the FDA Adverse Event Reporting System (FAERS) (Ball & Dal Pan,
2022). The Information Visualization Platform (InfoViP) was developed with Al/ML to

20 See the guidance for industry and FDA staff Qualification Process for Drug Development Tools
(November 2020). https://www.fda.gov/media/133511/download

21 See the Model-Informed Drug Development Paired Meeting Program, October 2022.
https://www.fda.gov/drugs/development-resources/model-informed-drug-development-pilot-program
22 See FDA’s Sentinel Initiative, December 2022. https://www.fda.gov/safety/fdas-sentinel-initiative
23 See the CBER Biologics Effectiveness and Safety (BEST) System, March 2022.
https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/cber-biologics-effectiveness-
and-safety-best-system

24 See the National Evaluation System for health Technology (NEST), October 2019.
https://www.fda.gov/about-fda/cdrh-reports/national-evaluation-system-health-technology-nest

25 See the FDA Sentinel System Five-Year Strategy, January 2019.
https://www.fda.gov/media/120333/download

26 See the CBER BEST System, March 2022. https://www.fda.gov/vaccines-blood-biologics/safety-
availability-biologics/cber-biologics-effectiveness-and-safety-best-system
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detect duplicate ICSRs, classify ICSRs by level of information quality, and derive
visualization of the timeline of clinical events to aid in analysis of reported adverse
events (Kreimeyer et al., 2022; Kreimeyer et al., 2021; Spiker et al., 2020). Al/ML
methods have been investigated to automate the identification of adverse events in drug
product labeling to support safety reviewers in the triaging of ICSRs to facilitate the
identification of unknown or unexpected safety issues (Bayer et al., 2021; Ly et al.,
2018). Another Al-based tool that focuses on drug product labeling and is currently in
use is the Computerized Labeling Assessment Tool (CLAT), which serves to automate
the review of label and labeling (e.g., prescribing information, carton and container
labeling). NLP and ML are also being explored to classify free-text narratives in FAERS
ICSRs into structured medical dictionary medication error terminologies to support the
human review of coding quality. Additionally, through the FDA Quality Metrics Reporting
Program,?” CDER’s Emerging Technology Program, and CBER’s Advanced
Technologies Team (CATT) Program,?® FDA has been able to engage industry and
gain valuable feedback on AlI/ML use cases in pharmaceutical manufacturing.

The FDA also utilizes mechanisms such as a Broad Agency Announcement to solicit
extramural proposals that address emerging regulatory science priorities, including
leveraging external expertise and infrastructure to provide insight on the methods used
to integrate and evaluate AI/ML in drug development.

lll. Considerations for the Use of AI/ML in Drug Development

As shown in Section Il, Al/ML has been applied to a broad range of drug development
activities and continues to evolve. The use of AI/ML has the potential to accelerate the
drug development process and make clinical trials safer and more efficient. However, it
is important to assess whether the use of Al/ML introduces specific risks and harms.
For example, AI/ML algorithms have the potential to amplify errors and preexisting
biases present in underlying data sources and, when the findings are extrapolated
outside of the testing environment, raise concerns related to generalizability and ethical
considerations. Additionally, an Al/ML system may exhibit limited explainability due to
its underlying complexity or may not be fully transparent for proprietary reasons. These
concerns have resulted in a focus on developing standards for trustworthy Al that
address specific characteristics in areas such as explainability, reliability, privacy,
safety, security, and bias mitigation. This section begins with an overview of
considerations and good practices for the general application of AI/ML and ends with
questions to solicit feedback from stakeholders on these considerations and to further
identify potential good practices in the context of drug development. This will aid FDA in
further identifying opportunities and challenges with utilizing Al/ML throughout the drug
development process.

27 See the Quality Metrics for Drug Manufacturing, October 2022.
https://www.fda.gov/drugs/pharmaceutical-quality-resources/quality-metrics-drug-manufacturing

28 See the CBER Advanced Technologies Team (CATT) Program, June 27, 2019.
https://www.fda.gov/vaccines-blood-biologics/industry-biologics/cber-advanced-technologies-team-catt
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A. Overarching Standards and Practices for the Use of Al/ML

There has been an increased commitment by the Federal Government and the
international community to facilitate Al innovation and adoption, which includes
promoting trustworthy and ethical Al (Exec. Order No. 13859, Maintaining American
Leadership in Atrtificial Intelligence, February 11, 2019; Exec. Order No. 13960,
Promoting the Use of Trustworthy Atrtificial Intelligence in the Federal Government,
December 3, 2020; Lander & Nelson, October 22, 2021; Notice of Request for
Information on Public and Private Sector Uses of Biometric Technologies, October 8,
2021; Organisation for Economic Co-operation and Development, 2019; Vought, 2020).
As a result, efforts for the development of cross-sector and sector-specific standards to
facilitate the technological advancement of Al have rapidly increased in both domestic
and international forums. For example, in August 2019, the National Institute for
Standards and Technology (NIST) released “U.S. Leadership in Al: A Plan for Federal
Engagement in Developing Technical Standards and Related Tools” to help ensure the
use of technical standards and to advance innovation, trust, and confidence in the use
of Al (National Institute of Standards and Technology, 2019). The plan identified
several areas of focus for Al standards development, including data and knowledge,
performance testing and reporting methodology, risk management, and trustworthiness,
among others. Other standards organizations, such as the International Organization
for Standardization (1ISO), the Institute of Electrical and Electronics Engineers (IEEE),
and the International Electrotechnical Commission (IEC), are also developing relevant
Al/ML standards and work products addressing fundamental issues of data quality,
explainability, and performance, in addition to examining applications that are specific to
certain industries. The Verification and Validation (V&V 40) risk-informed credibility
assessment framework was initially developed by the American Society of Mechanical
Engineers (ASME) for the assessment of credibility of computational models used for
medical devices (American Society of Mechanical Engineers, 2018) and was later
adopted into model-informed drug development?® (Kuemmel et al., 2020; Viceconti et
al., 2021). As Al/ML is also used for computational models, the V&V 40 framework
potentially serves to inform whether the Al/ML model is credible for use in drug
development.®® The V&V 40 Standard, which is not specific to Al/ML and does not
specify activities or define criteria required to establish model credibility for a particular
context of use or application, has been adapted for medical devices and for model-
informed drug development.3'-32

2% Promoting Innovation in Medical Product Assessment: A Risk-based Framework for Evaluating
Computational Models for Regulatory Decision-Making, October 2020. https://www.fda.gov/drugs/news-
events-human-drugs/promoting-innovation-medical-product-assessment-risk-based-framework-
evaluating-computational-models

30 A V&V 70 Subcommittee has been established for Verification and Validation of Machine Learning.

31 See the draft guidance for industry and FDA staff Assessing the Credibility of Computational Modelling
Simulation in Medical Device Submissions (December 2021). When final, this guidance will represent
FDA's current thinking on this topic. https://www.fda.gov/media/154985/download

32 Promoting Innovation in Medical Product Assessment: A Risk-based Framework for Evaluating
Computational Models for Regulatory Decision-Making, October 2020. https://www.fda.gov/drugs/news-
events-human-drugs/promoting-innovation-medical-product-assessment-risk-based-framework-
evaluating-computational-models
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In addition to the V&V 40 Standard for evaluating the predictive capability of
computational models for medical devices, FDA, Health Canada, and the United
Kingdom’s Medicines and Healthcare products Regulatory Agency (MHRA) jointly
published 10 guiding principles to inform the development of Good Machine Learning
Practices (GMLP) for medical devices that use AlI/ML.33 The guiding principles include
adopting a total product life cycle approach in which multidisciplinary expertise is
leveraged throughout product development, with an in-depth understanding of how the
model is integrated into the clinical workflow. The principles also emphasize the
importance of adequate representation within the clinical study population to manage
bias, improve generalizability, and provide sufficient transparency with clear and
essential information, such as the product’s intended use and indications, the data used
to test and train the model, and known limitations. Finally, these GMLP highlight the
importance of monitoring deployed models for performance while managing the risk of
model retraining. FDA’s CDRH had previously discussed the role of GMLP for medical
devices, and in 2019 issued a proposed framework for modifications to Al/ML-based
SaMD. The framework proposed a predetermined change control plan mechanism—
whereby a sponsor can proactively specify intended modifications to device software
incorporating Al/ML and the methods that will be used to ensure their safety and
effectiveness—thereby laying the foundation for Al/ML-enabled devices with improved
capacity for adaptation.34

Although the standards and practices described in this section were not tailored
specifically for drug development, the utility and applicability of these standards to drug
development and the development of medical devices intended to be used with drugs,
will be explored to ensure alignment and consistency.

B. Discussion of Considerations and Practices for AI/ML in Drug Development

Informed by the diverse applications of AI/ML in drug development (see Section II),
FDA is considering approaches to provide regulatory clarity around the use of Al/ML in
drug development, supported by an expanding body of knowledge and a clear
appreciation of the opportunities and challenges with utilizing Al/ML in drug
development. While certain standards and practices outlined in Section lll.A can
potentially be adapted to address the use of AI/ML in the context of drug development,
the use of AI/ML in drug development may raise specific challenges that could highlight
additional considerations. As noted above, this document is not FDA guidance or policy
and does not endorse any specific approaches for the use of AI/ML in drug
development. However, the feedback and future discussions with stakeholders can
help inform future regulatory activities.

33 Good Machine Learning Practice for Medical Device Development: Guiding Principles, October 2021.
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-
medical-device-development-guiding-principles

34 Proposed Regulatory Framework for Modifications to Atrtificial Intelligence/Machine Learning (Al/ML)-
Based Software as a Medical Device (SaMD) — Discussion Paper and Request for Feedback, April 2019.
https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-
Learning-Discussion-Paper.pdf
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Adapting the overarching principles of the General Accountability Office Al
accountability framework®> below, FDA’s CDER, CBER, CDRH, including DHCoE, aim
to initiate a discussion with stakeholders and solicit feedback on three key areas in the
context of AI/ML in drug development:

(1) human-led governance, accountability, and transparency;

(2) quality, reliability, and representativeness of data; and

(3) model development, performance, monitoring, and validation.

In each of these areas, a risk-based approach could include measures commensurate
with the level of risk posed by the specific context of use for Al/ML.

(1) Human-led governance, accountability, and transparency

Human-led Al/ML governance can help ensure adherence to legal and ethical values,
where accountability and transparency are essential for the development of
trustworthy Al. Such governance and clear accountability may extend across the
spectrum of planning, development, use, modification, and discontinuation (as
applicable) of Al/ML in the drug development process.

As part of governance, a risk management plan that considers the context of use may
be applied to identify and mitigate risks. This approach can help guide the level of
documentation, transparency, and explainability, with tracking and recording of key
steps and decisions, including the rationale for any deviations and procedures that
enable vigilant oversight and auditing. Transparency and documentation can provide
critical insight on the initial planning, development, function, and any modifications of
the AI/ML in the specific context of use, while explainability can provide
accompanying evidence or reason for the outputs.

Questions:

¢ In what specific use cases or applications of Al/ML in drug development are
there the greatest need for additional regulatory clarity?

e What does transparency mean in the use of Al/ML in drug development (for
example, transparency could be considered as the degree to which appropriate
information about the AI/ML model—including its use, development,

35 See Artificial Intelligence: An Accountability Framework for Federal Agencies and Other Entities (June
2021). https://www.gao.gov/assets/gao-21-519sp.pdf
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performance, and, when available, logic—is clearly communicated to
regulators and/or other stakeholders)?36

e In your experience, what are the main barriers and facilitators of transparency
with Al/ML used during the drug development process (and in what context)?

e What are some of the good practices utilized by stakeholders for providing risk-
based, meaningful human involvement when Al/ML is being utilized in drug
development?

e What processes are in place to enhance and enable traceability and
auditability?

e How are pre-specification activities managed, and changes captured and
monitored, to ensure the safe and effective use of AI/ML in drug development?

(2) Quality, reliability, and representativeness of data

Al/ML is particularly sensitive to the attributes or characteristics of the data used for
training, testing, and validation. Although not unique to Al/ML, missing data, bias, and
data drift are typically important considerations. Ensuring data quality, reliability, and
that the data are fit for use (i.e., relevant for the specific intended use and population)
can be critical. Potential data-related issues to consider include:

Bias: Al/ML can potentially amplify preexisting biases that exist in the underlying
input data. NIST published a document characterizing three categories of bias
(human, systemic, and statistical/computational) and “how they may occur in the
commission, design, development, and deployment of Al technologies that can be
used to generate predictions, recommendations, or decisions (e.g., algorithmic
decision systems), and how Al systems may create societal harms.”3”

Integrity: The completeness, consistency, and accuracy of data.3®

Privacy and security: The protection and privacy of data, linked to data
classifications and the technical features of the system.

Provenance: Record trail that accounts for the origin of a piece of data (in a
database, document, or repository) together with an explanation of how and why it
got to the present place.®® Provenance describes “the metadata, or extra

36 Adapted from ISO/IEC JTC1/SC42 DIS 25059 (draft).
https://www.iso.org/standard/80655.html|?browse=tc

ST NIST Special Publication 1270, March 2022. https://doi.org/10.6028/NIST.SP.1270

38 For additional considerations related to data integrity see the guidance for industry Data Integrity and
Compliance with Drug CGMP (December 2018). https://www.fda.gov/media/119267/download

39 Encyclopedia of Database Systems, definition of data provenance.
https://link.springer.com/referenceworkentry/10.1007 %2F978-0-387-39940-9 1305
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information about data, that can help answer questions such as who created the
data and when.”40

Relevance: Adequate data are available and are appropriate for the intended use.

Replicability: Obtaining consistent results across studies aimed at answering the
same question, each of which has obtained its own data.*! It is important to clarify
data access early in the process.

Reproducibility: Obtaining consistent results using the same input data,
computational steps, methods and code, and conditions of analysis*? (while not
confirming validity, the transparency required to demonstrate reproducibility
permits evaluation of the validity of design and operational decisions (S. V. Wang
et al., 2017)).

Representativeness: Confidence that a sample from which evidence is generated
is sufficiently similar to the intended population. In the context of patient
experience data, representativeness includes the extent to which the elicited
experiences, perspectives, needs, and priorities of the sample are sufficiently
similar to those of the intended patient population.43

Questions:

e What additional data considerations exist for AI/ML in the drug development
process?

e What practices are developers, manufacturers, and other stakeholders
currently utilizing to help assure the integrity of Al/ML or to address issues,
such as bias, missing data, and other data quality considerations, for the use of
AI/ML in drug development?

e What are some of the key practices utilized by stakeholders to help ensure
data privacy and security?

e What are some of the key practices utilized by stakeholders to help address
issues of reproducibility and replicability?

¢ What processes are developers using for bias identification and management?

40 21st Century Cures Act: Interoperability, Information Blocking, and the ONC Health IT Certification
Program (March 2019). https://www.federalregister.gov/documents/2019/03/04/2019-02224/21st-century-
cures-act-interoperability-information-blocking-and-the-onc-health-it-certification

41 Ibid.

42 National Academies of Sciences, Engineering, and Medicine, 2019, Reproducibility and Replicability in
Science. https://doi.org/10.17226/25303

43 See discussion document for Patient-focused Drug Development Public Workshop Collecting
Comprehensive and Representative Input, December 2017.

https://www.fda.gov/media/109179/download
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(3) Model development, performance, monitoring, and validation

The use of the model may be important to consider in evaluating Al/ML model
development and performance, including through practices of pre-specification steps
and clear documentation of criteria for developing and assessing models. It may also
be important to consider the model risk and credibility; model risk drives the selection
of credibility goals and activities.** Model risk is determined by two factors, which are
shaped by the context of use: model influence (the weight of the model in the totality
of evidence for a specific decision) and decision consequence (the potential
consequences of a wrong decision).

In balancing performance and explainability, it may be important to consider the
complexity of the AI/ML model. In situations where complex models (e.g., artificial
neural network models) are determined to have similar performance, there may be
overall advantages to selecting the more traditional and parsimonious (i.e., fewer
parameters) model.

It may also be important to monitor and document monitoring efforts of the Al/ML
model to ensure it is reliable, relevant, and consistent over time. This includes
documentation of the results of monitoring and any corrective action taken to ensure
that the Al/ML produces intended results. Subsequent assessments (e.g., postmarket
safety monitoring, surveillance) can provide valuable feedback on processes and real-
world model performance. Real-world model performance includes applications that
may be supported by collection and monitoring of RWD (e.g., electronic health
records, product and disease registries). Potential re-training based on real-world
performance could provide important insights to model performance, and following
such re-training, it may be important to monitor and document the AI/ML model to
appropriately manage risks.

Data considerations also include providing the details of the training dataset utilized to
develop the Al/ML model, along with the performance, when employing independent,
external testing data to support verification and validation (“external validity”). Itis
generally important for data of sufficient quality for the particular context of use to be
representative of the population where the AI/ML method will be utilized. It is
important to help ensure Al/ML models are validated to produce results that are
credible for the model’'s use. Credibility activities include verification of the software
code and calculations, validation of the model, and evaluation of the applicability of

44 Credibility refers to trust in the predictive capability of a computational model for a particular context of
use (Kuemmel et al., 2020). This includes steps to document performance and approaches to measure
uncertainty at the component level (e.g., model and non-level components, including metrics and
assessing performance and outcome of each component) and system level (e.g., methods for
assessment, performance metrics, and outcomes), where feasible. Demonstration of credibility often
includes a risk-based approach, where uses presenting the highest risk generally require the greatest
standard of evidence, with a gradient of evidence needed based on the associated risk (i.e., informing
early-stage drug development for non-serious medical condition versus evaluating drug safety and
effectiveness for critical medical condition).
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validation assessments to the context of use. These activities include considerations
of measuring the level of uncertainty of the model predictions. Upon completion of
credibility activities, an assessment can be made to determine whether the model is
sufficiently credible for its use and whether the model may be acceptable for a given
regulatory purpose.

Questions:

e \What are some examples of current tools, processes, approaches, and best
practices being used by stakeholders for:

Documenting the development and performance of AI/ML models that can
be applied in the context of drug development (e.g., CONSORT-AI (Liu et
al., 2020) and SPIRIT-AIl (Cruz Rivera et al., 2020))?

Selecting model types and algorithms for a given context of use?
Determining when to use specific approaches for validating models and
measuring performance in a given context of use (e.g., selecting relevant

success criteria and performance measures)?

Evaluating transparency and explainability and increasing model
transparency?

Addressing issues of accuracy and explainability (e.g., scenarios where
models may provide increased accuracy, while having limitations in
explainability)?

Selecting open-source Al software for Al/ML model development? What
are considerations when using open-source Al software?

The use of RWD performance in monitoring Al/ML?

e What practices and documentation are being used to inform and record data
source selection and inclusion or exclusion criteria?

¢ In what context of use are stakeholders addressing explainability, and how
have you balanced considerations of performance and explainability?

e What approaches are being used to document the assessment of uncertainty
in model predictions, and how is uncertainty being communicated? What
methods and standards should be developed to help support the assessment
of uncertainty?

As outlined above, many of the overarching principles and standards related to the
characteristics of trustworthy Al can help inform considerations or key practice areas for
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the application of Al/ML in the context of drug development. In addition to meeting
current requirements to support regulatory decision-making regarding a drug’s safety
and effectiveness, the use of Al/ML in drug development raises challenges related to
human-led AI/ML governance, accountability, and transparency; data considerations;
and model development, performance, monitoring, and validation. Transparency and
documentation across the entire product life cycle can help build trust in the use of
AI/ML. In this regard, it may be important to consider pre-specification and
documentation of the purpose or question of interest, context of use, risk, and
development of Al/ML. While not unique to the use of Al/ML in drug development, there
are also a broad range of data quality, relevance, and reliability-related considerations.
Related to the area of model development, performance, monitoring, and validation, the
V&V 40 risk-informed credibility assessment framework may be a helpful guide when
considering the specific use for AI/ML. In general, use of a risk-based approach may
guide the level of evidence and record keeping needed for the verification and validation
of AlI/ML models for a specific context of use. Engagement with the FDA early in the
process can also help inform and address these considerations.

IV. Next Steps: Engagement and Collaboration

The release of this initial discussion paper is part of a broader effort to communicate
with a range of stakeholders and to explore the relevant considerations for the use of
Al/ML in the development of human drugs and biological products. Coupled with this
document, FDA has included a series of questions for feedback, and a workshop with
stakeholders is planned to provide an opportunity for further engagement. The FDA will
also provide several other mechanisms to engage with stakeholders, sponsors, and
developers on this topic, and these can be utilized to address questions before
conducting a study that utilizes AlI/ML. In addition to formal meetings where these
methods can be discussed, the Critical Path Innovation Meetings (CPIM),*> ISTAND
Pilot Program,*¢ Emerging Technology Program,*” and Real-World Evidence Program#®
meetings are examples of additional avenues for communicating and discussing a
relevant Al/ML methodology or technology and improving efficiency and quality in drug
development. Additionally, communication and engagement with patients and the
public regarding considerations for Al/ML in drug development is critical to ensure
patient-centered approaches and policies.

Building on this discussion paper, FDA will continue to solicit feedback and engage a
broad group of stakeholders to further discuss considerations for utilizing Al/ML
throughout the drug development life cycle. These discussions and future

45 See CPIM, November 11, 2022. https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-
entities-and-new-therapeutic-biological-products/critical-path-innovation-meetings-cpim

46 See the ISTAND Pilot Program, February 10, 2021. https://www.fda.gov/drugs/drug-development-tool-
ddt-qualification-programs/innovative-science-and-technology-approaches-new-drugs-istand-pilot-
program

47 See Emerging Technology Program, February 22, 2022. https://www.fda.gov/about-fda/center-drug-
evaluation-and-research-cder/emerging-technology-program

48 See Framework for FDA’s Real World Evidence Program, April 14, 2020.
https:/fda.gov/media/120060/download
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738  collaborations with stakeholders may provide a foundation for a future framework or
739 guidance.
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Glossary

Accuracy: The level of agreement between the measured value and the true value of
the clinical event or characteristic.

Artificial Intelligence (Al): A branch of computer science, statistics, and engineering
that uses algorithms or models to perform tasks and exhibit behaviors such as learning,
making decisions, and making predictions.*?

Biomarker: A defined characteristic that is measured as an indicator of normal
biological processes, pathogenic processes, or biological responses to an exposure or
intervention, including therapeutic interventions. Biomarkers may include molecular,
histologic, radiographic, or physiologic characteristics. A biomarker is not a measure of
how an individual feels, functions, or survives.%®

Clinical Outcome Assessment (COA): A measure that describes or reflects how a
patient feels, functions, or survives. There are four types of COAs: patient-reported
outcome, observer-reported outcome, clinician-reported outcome, and performance
outcome.®"

Context of Use: A statement that fully and clearly describes the way Al/ML is to be
used and the drug development-related purpose of the use.%?

Controlled Terminology: A finite set of values (e.g., codes, text, numeric) that
represent the only allowed values for a data item. Generally, controlled terminology
standards specify the key concepts that are represented as definitions, preferred terms,
synonyms, and code systems.53

Decentralized Clinical Trial: A clinical investigation where some or all of the trial-
related activities occur at a location separate from the investigator’s location.%*

Digital Health Technology (DHT): A system that uses computing platforms,
connectivity, software, and/or sensors for health care and related uses. These
technologies span a wide range of uses, from applications in general wellness to
applications as a medical device. They include technologies intended for use as a

49 See IMDRF/AIMD WG/N67 Machine Learning-enabled Medical Devices: Key Terms and Definitions,
final document, May 6, 2022. https://www.imdrf.org/documents/machine-learning-enabled-medical-
devices-key-terms-and-definitions

50 See BEST (Biomarkers, EndpointS, and other Tools) Resource Glossary, 2016.
https://www.ncbi.nIm.nih.gov/books/NBK338448

51 See Clinical Outcome Assessment (COA), December 2020. https://www.fda.gov/about-fda/clinical-
outcome-assessment-coa-frequently-asked-questions

52 CDISC Glossary, 2022. https://evs.nci.nih.gov/ftp1/CDISC/Glossary/CDISC%20Glossary.html

53 Ibid.

54 See the draft guidance for industry, investigators, and other stakeholders Digital Health Technologies
for Remote Data Acquisition in Clinical Investigations (December 2021). When final, this guidance will
represent FDA’s current thinking on this topic. https://www.fda.gov/media/155022/download
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medical product, in a medical product, or as an adjunct to other medical products
(devices, drugs, and biologics). They may also be used to develop or study medical
products. Data captured by DHTs can often be transmitted directly to investigators,
sponsors, and/or other authorized parties, with the capability to maintain blinding or
masking when appropriate. The ability to transmit data remotely increases opportunities
for patients to participate in clinical investigations at locations remote from the
investigator’s site..

Digital Twins: An integrated multi-physics, multiscale, probabilistic simulation of a
complex system that uses the best available data, sensors, and models to mirror the
behavior of its corresponding twin. A fully developed digital twin consists of a physical
component (e.g., unit operations), a virtual component, and automated data
communications between the two. The development and application of digital twins are
now being extended to manufacturing and complex products to assess sensitivities of
material attributes and process parameters, reliability of control strategies, and
effectiveness of mitigation plans for potential disturbances.®

Drug Development Tool (DDT): A biomarker, COA, or any other method, material, or
measure determined to aid drug development and regulatory review. Animal models
developed to be used for product development under the Animal Rule®” have been
determined by FDA to be DDTs under section 507 of the FD&C Act.%®

Endpoint: A precisely defined variable intended to reflect an outcome of interest that is
statistically analyzed to address a particular research question. A precise definition of
an endpoint typically specifies the type of assessments made, the timing of those
assessments, the assessment tools used, and possibly other details, as applicable,
such as how multiple assessments within an individual are to be combined.°

Machine Learning (ML): A subset of Al that allows ML models to be developed by ML
training algorithms through analysis of data, without being explicitly programmed.®°

Natural Language Processing (NLP): The branch of computer science, specifically
the branch of Al, concerned with giving computers the ability to understand text and
spoken words in much the same way human beings can.®"

55 Ipid.

56 See Modeling & Simulation at FDA, November 16, 2022. https://www.fda.gov/science-research/about-
science-research-fda/modeling-simulation-fda

57 See Animal Rule Approvals, June 2022. https://www.fda.gov/drugs/nda-and-bla-approvals/animal-rule-
approvals

58 See the guidance for industry and FDA staff Qualification Process for Drug Development Tools
(November 2020). https://www.fda.gov/media/133511/download

59 See BEST (Biomarkers, EndpointS, and other Tools) Resource Glossary, 2016.
https://www.ncbi.nlm.nih.gov/books/NBK338448

60 See IMDRF/AIMD WG/N67 Machine Learning-enabled Medical Devices: Key Terms and Definitions,
final document, May 6, 2022. https://www.imdrf.org/documents/machine-learning-enabled-medical-
devices-key-terms-and-definitions

61 “What is natural language processing?” Accessed September 8, 2022.
https://www.ibm.com/cloud/learn/natural-language-processing#toc-what-is-na-jLju4DjE
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Neural Network: A commonly used form of AI/ML that is used for categorization
applications and has been loosely likened to the way that neurons in the brain process
signals. Neural networks typically consist of at least three layers of neurons: input layer
(which receives information), hidden layer (responsible for extracting patterns and
conducting the internal processing), and output layer (produces and presents the final
network output).?

Real-World Data (RWD): The data relating to patient health status and/or the delivery
of health care routinely collected from a variety of sources. Examples of RWD include
data derived from electronic health records (EHRs); medical claims and billing data;
data from product and disease registries; patient-generated data, including from in-
home-use settings; and data gathered from other sources that can inform on health
status, such as mobile devices.®?

Real-World Evidence (RWE): The clinical evidence about the usage and potential
benefits or risks of a medical product derived from analysis of RWD. RWD sources
(e.g., registries, collections of EHRs, administrative and medical claims databases) can
be used for data collection and, in certain cases, to develop analysis infrastructure to
support many types of study designs to develop RWE, including, but not limited to,
randomized trials (e.g., large simple trials, pragmatic clinical trials) and observational
studies (prospective or retrospective).64

Recurrent Neural Network: A type of artificial neural network that uses sequential
data or time series data to exhibit temporal dynamic behavior. These algorithms are
commonly used for ordinal or temporal problems, such as language translation, NLP,
speech recognition, and image captioning.®®

62 See the Executive Summary for the Patient Engagement Advisory Committee Meeting: Artificial
Intelligence and Machine Learning in Medical Devices, October 22, 2020.
https://www.fda.gov/media/142998/download

63 See the draft guidance for industry, investigators, and other stakeholders Real-World Data: Assessing
Electronic Health Records and Medical Claims Data to Support Regulatory Decision-Making for Drug and
Biological Products (September 2021). https://www.fda.gov/media/152503/download

64 Ibid.

65 Adapted from https://www.ibm.com/cloud/learn/recurrent-neural-networks
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