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I.  Background and Scope1 
2 

To fulfill its mission of protecting, promoting, and advancing public health, the Food and 3 
Drug Administration’s (FDA’s) Center for Drug Evaluation and Research (CDER), in 4 
collaboration with the Center for Biologics Evaluation and Research (CBER) and the 5 
Center for Devices and Radiological Health (CDRH), including the Digital Health Center 6 
of Excellence  (DHCoE), is publishing this document to facilitate a discussion with 7 
stakeholders on the use of artificial intelligence (AI)1 and machine learning (ML)2 in 8 
drug development,3,4 including in the development of medical devices intended to be 9 
used with drugs, to help inform the regulatory landscape in this area. 10 

11 
FDA helps to ensure that drugs are safe and effective while facilitating innovations in 12 
their development.  Recent, rapid technological innovations in data collection and 13 
generation tools, combined with robust information management and exchange systems 14 
and advanced computing abilities, may transform the way drugs are developed and 15 
used (ElZarrad, Lee, Purcell, & Steele, 2022).  This evolving ecosystem presents 16 
unique opportunities and challenges, and FDA is committed to working across its 17 
medical product centers with partners domestically and internationally to ensure that the 18 
full potential of these innovations is realized for the benefit of the public. 19 

20 
Developers, manufacturers, regulators, academic groups, and other stakeholders are 21 
working to develop a shared understanding of where and how specific innovations, such 22 
as AI and ML, can best be used throughout the drug development process.  FDA is 23 
publishing this discussion paper as part of a multifaceted approach to enhance mutual 24 
learning and to establish a dialogue with FDA stakeholders on this topic.  AI can 25 
generally be described as a branch of computer science, statistics, and engineering that 26 
uses algorithms or models to perform tasks and exhibit behaviors such as learning, 27 
making decisions, and making predictions.5  ML is considered a subset of AI that allows 28 
ML models to be developed by ML training algorithms through analysis of data, without 29 
models being explicitly programmed.6  Additionally, there are a variety of ML methods 30 
and different types of algorithms that may be utilized in a given context.  For purposes 31 
of this document, AI and ML will be referenced together as AI/ML, and references to 32 

1 Words and phrases in bold italics are defined in the Glossary. 
2 There are multiple definitions for AI and ML, and the Glossary includes several definitions from federal 
legislation and agencies. 
3 For purposes of this discussion paper, all references to drug or drugs include both human drugs and 
biological products.   
4 FDA is focusing this discussion paper on drug development.  However, many of the AI/ML scientific and 
regulatory science principles outlined in this document may be applicable across all medical products, 
including in the development of medical devices intended to be used with drugs (including, but not limited 
to, combination products, companion devices, and complementary devices).  Some medical devices 
intended to be used with drugs are intended for use only in clinical investigations;  others are intended to 
be marketed for use outside of clinical investigations.  Examples include medical devices that help identify 
side effects of drugs as well as medical devices that assist in drug dosing. 
5 See IMDRF/AIMD WG/N67 Machine Learning-enabled Medical Devices: Key Terms and Definitions, 
final document, May 6, 2022. https://www.imdrf.org/documents/machine-learning-enabled-medical-
devices-key-terms-and-definitions 
6 Ibid. 
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drug development and the drug development process include a wide scope of activities 33 
and phases, including manufacturing and postmarket drug safety monitoring, among 34 
others.7,8 35 
 36 
This discussion paper, which considers the application of AI/ML in the broad context of 37 
the drug development process, is not FDA guidance or policy and does not endorse a 38 
specific AI/ML use or approach in drug development.  Rather, this discussion paper is 39 
an initial communication with stakeholders, including academic groups, researchers, 40 
and technology developers, that is intended to promote mutual learning and discussion. 41 
It is particularly beneficial for those new to drug development and human subjects 42 
research, to recognize some of the initial thinking and considerations involved with 43 
utilizing these technologies, including having familiarity with FDA’s current activities, 44 
initiatives, practices, and potentially applicable regulations.  FDA is soliciting feedback 45 
on the opportunities and challenges with utilizing AI/ML in the development of drugs, as 46 
well as in the development of medical devices intended to be used with drugs.  This 47 
feedback will provide an additional resource to help inform the regulatory landscape in 48 
this area.   49 
 50 
In this discussion paper, three main topics are discussed:   51 
     52 

 Landscape of current and potential uses of AI/ML:  FDA recognizes the 53 
potential for AI/ML to enhance drug development in many ways, including to help 54 
bring safe and effective drugs to patients faster; provide broader access to drugs 55 
and thereby improve health; increase the quality of manufacturing; enhance drug 56 
safety; and develop novel drugs and drug classes, as well as personalized 57 
treatment approaches.  Section II provides examples of the use of AI/ML to 58 
highlight the potential impact of AI/ML across the drug development process and 59 
includes a brief description of FDA’s experience with AI/ML in drug development.  60 
The list of examples in this section is not comprehensive of all AI/ML uses, and it 61 
includes uses where FDA oversight may or may not be applicable.  The purpose 62 
of this section is to promote shared learning and to identify areas where future 63 
regulatory clarity may be helpful.  64 
 65 

 Considerations for the use of AI/ML:  FDA is also aware of the potential 66 
concerns and risks with emerging innovations such as AI/ML and will share initial 67 
considerations and solicit feedback on how to help ensure the responsible 68 
utilization of AI/ML in drug development.  Section III briefly describes several key 69 
efforts to develop general principles, standards, and practices for the use of 70 
AI/ML across diverse applications and then explores the principles and 71 
considerations that may be particularly applicable when using AI/ML for drug 72 
development activities.  FDA understands that AI/ML use in drug development is 73 

 
7 See The Drug Development Process, January 2018. https://www.fda.gov/patients/learn-about-drug-and-
device-approvals/drug-development-process 
8 In this discussion paper, the topic of clinical investigations focuses on the drug development process, 
however, many other activities and phases included as part of the drug development process may also be 
part of the development process for other medical products; see footnote 4. 
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diverse, and careful assessments that consider the specific context of use are 74 
needed.  Taking a risk-based approach to evaluate and manage the use of AI/ML 75 
can help facilitate innovations and protect public health.  76 

 77 
 Next steps and stakeholder engagement:  FDA is interested in mutual 78 

opportunities to learn and engage with all stakeholders to establish a shared 79 
understanding of AI/ML systems and their rapidly evolving potential uses and 80 
considerations in drug development.  As part of this ongoing effort, FDA 81 
welcomes feedback on this discussion paper and any AI/ML-related issues 82 
pertaining to drug development.  Specifically, to initiate a broader dialogue with 83 
stakeholders, Section III includes several key questions to which interested 84 
parties can provide perspectives and Section IV outlines opportunities for future 85 
engagement.  86 

 87 
II.  Current and Potential Uses of AI/ML in the Drug Development Process  88 
 89 
This section provides a high-level overview of the diverse and evolving uses of AI/ML 90 
being employed throughout the drug development process.  These examples are not 91 
comprehensive of all AI/ML uses and include uses where FDA oversight may or may 92 
not be applicable.9  Additionally, while some of the uses of AI/ML described in this 93 
section may also have utility in clinical practice, this paper is focused on uses of AI/ML 94 
in the drug development process.  The purpose of this section is to promote shared 95 
learning and to identify areas where future FDA regulatory clarity may be beneficial.   96 
 97 
Although the overall drug development process is an iterative continuum of activities 98 
and not strictly linear in nature, for simplicity, this section utilizes different phases of 99 
drug development to highlight several uses of AI/ML, ranging from drug discovery and 100 
clinical research to postmarket safety surveillance and advanced pharmaceutical 101 
manufacturing.  The section also includes references to how AI/ML is being applied to 102 
real-world data (RWD) and data from digital health technologies (DHTs) in support 103 
of drug development.  Some of the general challenges and considerations with utilizing 104 
AI/ML in different drug development use cases are discussed in Section III.   105 
 106 
A. Drug Discovery 107 
 108 
Early drug discovery is one of the areas with significant interest and activity in utilizing 109 
AI/ML.  Included below is a brief discussion of the current and potential uses of AI/ML 110 
for drug target identification, selection, and prioritization, as well as compound 111 
screening and drug design in drug discovery.  112 
 113 

 
9 The examples listed were not necessarily submitted to FDA for review or approval and are not meant to 
suggest an endorsement of any specific approach. The FDA does not endorse any particular use of 
AI/ML. 
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1.  Drug Target Identification, Selection, and Prioritization  114 
 115 
The early stages of drug development generally rely on the initial identification of a 116 
suitable biological target for drug candidates.  As a starting point, the process of 117 
identifying biological targets and elucidating disease relationships can utilize AI/ML to 118 
analyze and synthesize significant amounts of information from existing scientific 119 
research, publications, and other data sources.  The growth of available genomic, 120 
transcriptomic, proteomic, and other data sources from healthy persons and those with 121 
a specific disease of interest provide a significant opportunity to inform biological target 122 
selection.  These datasets are often complex and originate from disparate sources, 123 
which can be well-suited for the utilization of AI/ML approaches (Fumagalli et al., 2023). 124 
Building from existing validated data, AI/ML can be applied to mine and analyze these 125 
large multi-omics and other datasets to provide information on the potential structure 126 
and function of biological targets to predict their role in a disease pathway (Vamathevan 127 
et al., 2019; Weissler et al., 2021).  While early target identification and prioritization is a 128 
critical step where AI/ML could help improve the efficiency and effectiveness of drug 129 
development, it is important to validate the role of the biological target in the disease of 130 
interest through subsequent studies (Fumagalli et al., 2023).  131 
 132 
2.  Compound Screening and Design 133 
 134 
The discovery of potential drug candidates that modify the function of the identified 135 
biological targets of interest generally involves significant in silico or experimental 136 
screening of compound libraries, followed by subsequent refinement of a compound’s 137 
specificity and selectivity for the biological target.  In the area of compound screening, 138 
potential AI/ML uses include predicting the chemical properties and bioactivity of 139 
compounds and predicting efficacy and potential adverse events based on the 140 
compound’s specificity and affinity for a target (Chan, Shan, Dahoun, Vogel, & Yuan, 141 
2019; Schneider et al., 2020).    142 
 143 
AI/ML approaches used to further elucidate drug-target interactions could also help 144 
provide predictions about classes of drugs potentially interacting with the same targets 145 
or having a similar mechanism of action, which may help predict the toxicity of a 146 
molecule based on specific known features.  This strategy can help guide drug 147 
repurposing efforts that could utilize previously characterized compounds.  Drug 148 
repurposing efforts utilizing AI/ML can also potentially benefit from the increased 149 
availability of suitable RWD from a variety of sources (e.g., electronic health records 150 
(EHRs), registries, and DHTs) to identify previously unknown effects of drugs on 151 
disease pathways (Z. Liu et al., 2022).   152 
 153 
Finally, AI/ML could accelerate advances in de novo drug design (Mouchlis et al., 2021).  154 
For example, AI/ML may be applied to help predict the 3D structure of target proteins, 155 
informing chemical synthesis and the potential effect of a drug candidate on the target, 156 
including predicting affinity and potential toxicity (Chan et al., 2019; Jumper et al., 2021; 157 
Vamathevan et al., 2019).  It is worth noting that one must be cautious with the use of 158 
AI/ML in 3-D structure prediction, as many proteins that are developed for 159 
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pharmaceutical applications are codon optimized (with many synonymous mutations 160 
incorporated), the impact of which on protein structure is still an area of active research 161 
(Fumagalli et al., 2023; Jumper et al., 2021). 162 
 163 
B. Nonclinical Research 164 
 165 
Nonclinical research refers to in vitro and in vivo studies and is designed to further 166 
advance potential therapeutics towards clinical research in humans.  Nonclinical 167 
studies, in support of new drug development, can be conducted at all phases of 168 
development: prior to clinical studies, in parallel with clinical development, and even in 169 
postmarketing environments.  Data from pharmacokinetic, pharmacodynamic, and 170 
toxicologic studies conducted in animals; exploratory in vitro and in vivo mechanistic 171 
studies conducted in animal models; organ-on-chip and multi-organ chip systems; and 172 
cell assay platforms may be leveraged using AI/ML (e.g., computational modeling and 173 
simulation techniques) for evaluating toxicity, exploring mechanistic models, and 174 
developing in vivo predictive models (Bulitta et al., 2019; Harrison & Gibaldi, 1977; Hsu 175 
et al., 2014; Mager, Woo, & Jusko, 2009; Shroff et al., 2022).  176 
 177 
Pharmacokinetics (PK) describes the time course of drug absorption, distribution, 178 
metabolism, and excretion.  Pharmacodynamics (PD) explores the body’s biological 179 
response to drugs.  When PK and PD are integrated in a model, the model can describe 180 
how the drug effect will change with time when a certain dose or dosing regimen is 181 
used.  Pharmacokinetic/pharmacodynamic (PK/PD) modeling has been used in drug 182 
development for decades and can be applied at both the nonclinical and clinical stages 183 
(Daryaee & Tonge, 2019).  Along with the advances in computational tools and 184 
technology and the availability of modeling platforms, use of physiologically-based 185 
pharmacokinetic (PBPK) and physiologically-based PK/PD (PBPK-PD) modeling is also 186 
increasing (Sager, Yu, Ragueneau-Majlessi, & Isoherranen, 2015).  There are current 187 
efforts to explore the use of more novel AI/ML algorithms (e.g., artificial neural network 188 
models and tree-based models) for PK/PD modeling.  For example, a recurrent neural 189 
network, an ML algorithm commonly used for analyzing time series data, may be used 190 
to complement traditional PK/PD models in the area of highly complex PK/PD data 191 
analysis, and possibly lead to improved accuracy for nonclinical and clinical 192 
applications (Liu et al., 2021).  193 
 194 
C. Clinical Research 195 
 196 
Clinical research typically involves a series of phases of clinical trials in increasing 197 
numbers of human subjects to assess the safety and effectiveness of a drug.  One of 198 
the most significant applications of AI/ML in drug development is in efforts to streamline 199 
and advance clinical research.  For example, AI/ML is being utilized to analyze vast 200 
amounts of data from both interventional studies (also referred to as clinical trials) and 201 
non-interventional studies (also referred to as observational studies) to make inferences 202 
regarding the safety and effectiveness of a drug.  Additionally, AI/ML has the potential to 203 
inform the design and efficiency of non-traditional trials such as decentralized clinical 204 
trials, and trials incorporating the use of RWD extracted from EHRs, medical claims, or 205 
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other data sources.  AI/ML may also have a role in analyzing and interpreting data 206 
collected from DHTs used in clinical studies.  Finally, AI/ML could also be used to 207 
improve the conduct of clinical trials and augment operational efficiency.  The following 208 
subsections will highlight some of the uses and potential uses of AI/ML during the 209 
design and conduct of clinical research. 210 
 211 
1.  Recruitment 212 
 213 
AI/ML is increasingly being developed and used to connect individuals to trials for 214 
investigational treatments from which participants may benefit.  Specifically, AI/ML is 215 
being used to mine vast amounts of data, such as data from clinical trial databases, trial 216 
announcements, social media, medical literature, registries, and structured and 217 
unstructured data in EHRs, which can be used to match individuals to trials (Harrer, 218 
Shah, Antony, & Hu, 2019).  While these algorithms are trained on high volumes of 219 
patient data and enrollment criteria from past trials, it is important to ensure adequate 220 
representation of populations that are likely to use the drug. In the future, these 221 
technologies, if properly validated, may continue to play an increasing role in matching 222 
individuals with investigational treatments. 223 
 224 
2.  Selection and Stratification of Trial Participants 225 
 226 
Enrichment strategies can aid participant selection in clinical investigations designed to 227 
demonstrate the effectiveness of drug and biological products.10  AI/ML has been 228 
explored and used as part of a clinical investigation in the prediction of an individual 229 
participant’s clinical outcome based on baseline characteristics (e.g., demographic 230 
information, clinical data, vital signs, labs, medical imaging data, and genomic data) 231 
(Aerts et al., 2016; Athreya et al., 2019; Dercle et al., 2020; Harrer et al., 2019; 232 
Kawakami et al., 2019).  Such predictive models can be used to enrich clinical trials 233 
(e.g., identifying high-risk participants or participants more likely to respond to the 234 
treatment).  When these types of AI/ML algorithms are used for patient evaluation and 235 
selection before randomization, it may be possible to reduce variability and increase 236 
study power (Y. Wang, Carter, Li, & Huang, 2022).   237 
 238 
In addition to utilization in enrichment strategies, such predictive models can also be 239 
used for participant stratification, for example, if an AI/ML model could predict the 240 
probability of a serious adverse event before an investigational treatment is 241 
administered. Based on their predicted risk for these serious adverse events, 242 
participants can be stratified into different groups and then monitored accordingly (or 243 
excluded depending on predicted severity of the adverse event).   244 
 245 

 
10 See the guidance for industry Enrichment Strategies for Clinical Trials to Support Determination of 
Effectiveness of Human Drugs and Biological Products (March 2019). 
https://www.fda.gov/media/121320/download  
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3.  Dose/Dosing Regimen Optimization 246 
 247 
AI/ML can be used to characterize and predict PK profiles after drug administration.  It 248 
can also be used to study the relationship between drug exposure and response, taking 249 
into consideration confounding factors.  These kinds of models can be used to optimize 250 
the dose/dosing regimen selection for a study (Liu et al., 2021; Lu, Deng, Zhang, Liu, & 251 
Guan, 2021).  This could potentially include aiding in dose optimization in special 252 
populations where there may be limited data (e.g., rare disease studies, pediatric and 253 
pregnant populations). 254 
 255 
4.  Adherence  256 
 257 
AI/ML can be used to monitor and improve adherence during a clinical trial through 258 
tools, such as smartphone alerts and reminders, eTracking of medication (e.g., smart 259 
pillboxes and tools for visual confirmation) (Mason et al., 2022), and eTracking of 260 
missed clinical visits, which trigger non-adherence alerts.  Examples of AI/ML used in 261 
clinical research to improve medication adherence include applications using digital 262 
biomarkers, such as facial and vocal expressivity, to monitor adherence remotely.   263 
 264 
5.  Retention 265 
 266 
AI/ML has the potential to improve the participants’ access to relevant trial information 267 
by enabling tools, such as AI chatbots, voice assistance, and intelligent search.  AI/ML 268 
can also be used to reduce the burden for participants by using passive data collection 269 
techniques and by extracting more information from available data generated during 270 
clinical practice or by study activities (Weissler et al., 2021).  Additionally, data from 271 
DHTs and other systems can be used to develop patient profiles to potentially predict 272 
dropouts and adverse events to ensure participant retention.  273 
 274 
6.  Site Selection 275 
 276 
Trial operational conduct could also be optimized by utilizing AI/ML to help identify 277 
which sites have the greatest potential for a successful trial and to aid sites in identifying 278 
process gaps.  For example, algorithms can be used to evaluate site performance and 279 
to help determine which sites may have a higher risk of running behind schedule based 280 
on data from other trials at that site. 281 
 282 
7.  Clinical Trial Data Collection, Management, and Analysis 283 
 284 

a. Data Collection 285 
 286 
DHTs, such as wireless and smartphone-connected products, wearables, implantables, 287 
and ingestibles, are increasingly being used in clinical trials to collect objective, 288 
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quantifiable, longitudinal, and continuous physiological data.11  In addition, many of 289 
these DHTs enable the use of AI/ML, either as embedded algorithms within the DHT or 290 
employed upon the data generated after the data are collected from the DHT, and have 291 
been used to predict the status of a chronic disease and its response to treatment 292 
(Stehlik et al., 2020) or to identify novel characteristics of an underlying condition 293 
(Avram et al., 2020).  AI/ML can be utilized to analyze the large and diverse data 294 
generated from the continuous monitoring of persons using these technologies.  This 295 
could include using AI/ML to aid in the evaluation of multimodal data and composite 296 
measures that may combine individual measures collected through multiple DHTs 297 
(Cohoon & Bhavnani, 2020).  298 
 299 

b. Data Management  300 
 301 
AI/ML can be used for a range of data cleaning and curation purposes, including 302 
duplicate participant detection and imputation of missing data values (Zhang, Yan, Gao, 303 
Malin, & Chen, 2020), as well as the ability to harmonize controlled terminology 304 
across drug development programs.  Use of AI/ML could also significantly enhance data 305 
integration efforts by using supervised and unsupervised learning to help integrate data 306 
submitted in various formats and perform data quality assessments.  Additionally, AI/ML 307 
can be used for data curation via masking and de-identification of personal identifiable 308 
information, metadata creation, and search and retrieval of stored data.  These 309 
applications can potentially increase data accuracy and improve the speed at which 310 
data are prepared for analyses.  311 
 312 

c. Data Analysis  313 
 314 
AI/ML has been used to analyze high volumes of diverse and complex RWD extracted 315 
from EHRs, medical claims, and disease registries, among other sources.  Additionally, 316 
the use of AI/ML in predictive modeling and counterfactual simulation to inform clinical 317 
trial designs is being actively explored.  For example, in silico clinical trials utilize 318 
computational modeling and simulation to evaluate drug candidates using a virtual 319 
cohort of simulated participants with realistic variability of traits representing the desired 320 
participant population (Pappalardo, Russo, Tshinanu, & Viceconti, 2019).  AI/ML could 321 
be employed in these situations to aid in evaluating a vast number of counterfactual 322 
simulations and to predict trial outcomes before human trials.   323 
 324 
At an even more personalized level, AI/ML can also be used in the context of digital 325 
twins of patients, an emerging method that could potentially be used in clinical research.  326 
To create digital twins of patients, AI/ML can be utilized to build in silico representations 327 
or replicas of an individual that can dynamically reflect molecular and physiological 328 
status over time (European Medicines Agency, 2022; Laubenbacher, Sluka, & Glazier, 329 
2021; Schuler et al., 2021).  In comparison to a participant in a clinical trial that received 330 
an investigational treatment, the digital twin could potentially provide a comprehensive, 331 

 
11  See the draft guidance for industry, investigators, and other stakeholders Digital Health Technologies 
for Remote Data Acquisition in Clinical Investigations (December 2021). When final, this guidance will 
represent FDA’s current thinking on this topic.  https://www.fda.gov/media/155022/download  
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longitudinal, and computationally generated clinical record that describes what may 332 
have happened to that specific participant if they had received a placebo.  333 
 334 
8.  Clinical Endpoint Assessment 335 
 336 
Clinical endpoint assessment is a key part of evaluating safety and efficacy of medical 337 
interventions in clinical trials.  AI/ML-enabled algorithms could detect clusters of signs 338 
and symptoms to identify a potential safety signal, as well as help detect cases with 339 
safety issues in real time (Pierce et al., 2017; Routray et al., 2020).  AI/ML could be 340 
used to assist in the assessment of outcomes captured from diverse sources (e.g., 341 
DHTs, social media) during a clinical trial, including those consisting of large amounts of 342 
data for which manual review may be impractical.  343 
 344 
D. Postmarketing Safety Surveillance 345 
 346 
For purposes of this paper, pharmacovigilance (PV) refers to the science and activities 347 
related to the detection, assessment, understanding, and prevention of adverse events 348 
or any other drug-related problems (including medication errors and product quality 349 
issues).12  Postmarketing safety surveillance, or PV activities in the post-approval 350 
period, includes postmarketing safety reporting of adverse events associated with use 351 
of human drug and biological products.  An individual case safety report (ICSR) is used, 352 
as applicable, for the postmarketing reporting of adverse events to FDA and serves as 353 
an important data source of potential drug safety issues for postmarket safety 354 
surveillance.  The clinical information in ICSRs can include suspect product or products, 355 
and temporal information related to use of the product and occurrence of the adverse 356 
event(s) in the patient’s medical history, clinical course, and outcome.  Complete and 357 
accurate reporting of ICSRs is critical to the understanding of a drug’s safety profile.  358 
For reasons including increases in ICSR volume, AI/ML applications are being explored 359 
to help process and evaluate ICSR submissions within regulatory agencies (Ball & Dal 360 
Pan, 2022; Bate & Hobbiger, 2021).  361 
 362 
1.  Case Processing 363 
 364 
There are potential opportunities to use AI/ML for automation during ISCR processing.  365 
The number and complexity of data sources of adverse events for ICSRs have 366 
increased, including from spontaneous reports, clinical trials, EHRs, social media, 367 
phone calls, emails, literature, patient registries, claims data, and post-approval safety 368 
studies (Beninger, 2020).  The use of AI/ML to detect information from source 369 
documents could help identify adverse events for ICSR submission.  For instance, the 370 
use of AI/ML to detect and evaluate drug event associations from literature and to 371 
screen social media for adverse events has been explored (Comfort, Dorrell, Meireis, & 372 

 
12 See the guidance for industry Good Pharmacovigilance Practices and Pharmacoepidemiologic 
Assessment (March 2005).  Accessed September 30, 2022.  https://www.fda.gov/media/71546/download  
See also, Council for International Organizations of Medical Sciences (CIOMS) Pharmacovigilance 
definition.  Accessed September 29, 2022.  https://cioms.ch/pharmacovigilance/  
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Fine, 2018; Negi, Pavuri, Patel, & Jain, 2019; S. V. Wang et al., 2017; W. Wang et al., 373 
2011).   374 
 375 
After an adverse event is identified from a data source, AI/ML could be used for case 376 
validity, case prioritization, duplicate check, coding, and quality control.  The use of 377 
AI/ML can help identify whether a case is a valid case, which includes determining 378 
whether a case contains the minimum reporting requirements, such as an identifiable 379 
patient, suspect drug or biological product, adverse event(s), and identifiable reporter 380 
(Abatemarco et al., 2018; Schmider et al., 2019).  During case intake, to assist in the 381 
prioritization of cases, AI/ML has been used to classify adverse events by expectedness 382 
(whether an adverse event is known and in the product labeling) (Abatemarco et al., 383 
2018; Routray et al., 2020). Automated duplicate checks using AI/ML are being 384 
conducted to identify whether the case is a true duplicate, a follow up version of a prior 385 
case, or a new case (Kassekert 2022).  Another area in which AI/ML has been applied 386 
is the coding of adverse events described in ICSRs to structured medical dictionary 387 
terms and for quality control purposes (Ghosh 2020).   388 
 389 
2.  Case Evaluation 390 
 391 
Adverse event cases undergo clinical assessment.  Case evaluation includes assessing 392 
the possibility of a causal relationship between the drug and adverse event, as well as 393 
assessing the outcome of the case.  An AI model was developed based on relevant 394 
features used in causality assessments; it was trained, validated, and tested to classify 395 
cases by the probability of a causal relationship between the drug and adverse event 396 
(Comfort et al., 2018).  AI/ML has also been applied to determine seriousness of the 397 
outcome of ICSRs (Routray, et al., 2020), which not only supports case evaluation, but 398 
also the timeliness of individual case submissions that require expedited reporting. 399 
 400 
3.  Case Submission 401 
 402 
Generally, the final step after case processing is the submission of ICSRs.  AI/ML 403 
algorithms have been used to automate reporting rules for submission of ICSRs to FDA.  404 
The reporting of ICSRs is required on an individual basis, as well as in aggregate 405 
(Ghosh et al., 2020).  The aggregate reporting of adverse events generally involves the 406 
compilation of safety data for a product that is submitted at regular time intervals as 407 
specified.  AI/ML can be used to develop aggregate reports that include multiple 408 
adverse events for particular products that occur within a time period for reporting 409 
purposes (Lewis & McCallum, 2020). 410 
 411 
E. Advanced Pharmaceutical Manufacturing13 412 
 413 
A critical aspect of drug development includes the methods, facilities, and controls used 414 
in manufacturing, processing, packing, and holding of a drug to help ensure that the 415 

 
13 The examples in this section are based on the review of general published information that projects or 
forecasts how AI/ML may be currently used in the pharmaceutical manufacturing space.  In the continued 
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drug meets the requirements of safety and effectiveness, has the identity and strength it 416 
is represented to possess, and meets quality and purity characteristics.  Advanced 417 
analytics leveraging AI/ML in the pharmaceutical manufacturing industry offers many 418 
possibilities, including, but not limited to, enhancing process control, increasing 419 
equipment reliability and throughput, monitoring early warnings or signals that the 420 
manufacturing process is not in a state of control, detecting recurring problem clusters, 421 
and preventing batch losses.  The use of AI/ML to support pharmaceutical 422 
manufacturing can be deployed together with other advanced manufacturing 423 
technologies (e.g., process analytical technology, continuous manufacturing) to achieve 424 
the desired benefits.  AI/ML is an enabler for the implementation of Industry 4.0, a term 425 
that refers to the fourth industrial revolution that brings together rapidly evolving 426 
technologies, and could result in a well-controlled, hyper-connected, digitized 427 
ecosystem and pharmaceutical value chain for the manufacturer (Arden et al., 2021).  428 
AI/ML could also be used to improve the reliability of the manufacturing supply chain 429 
through forecasting product demand, analyzing production schedules, estimating and 430 
mitigating the impact of potential disruptions, and optimizing inventory.  Use of AI/ML-431 
based approaches in pharmaceutical manufacturing can be broadly grouped into the 432 
areas outlined below that cover the entire drug manufacturing life cycle, from design to 433 
commercial manufacturing.  434 
 435 
1.  Optimization of Process Design 436 
 437 
Digital twins can also be used in process design optimization.  In this context, a digital 438 
twin of a process is a digital replica of the physical process used to better understand, 439 
analyze, predict, and optimize process performance.  The digital twin could be 440 
especially beneficial for analyzing manufacturing processes characterized by a limited 441 
amount of development data, where AI/ML models could potentially leverage prior 442 
knowledge of the product and process (e.g., from previous studies, development 443 
programs, and scientific literature) to more quickly identify the optimal processing 444 
parameters, thus reducing design time and waste.    445 
 446 
2.  Advanced Process Control 447 
 448 
Process controls have been implemented in pharmaceutical manufacturing for several 449 
decades.  Traditional process controls maintain input process parameters at set points, 450 
but are not capable of simultaneously changing multiple input parameters to maintain 451 
the output parameters at desired levels to optimize the process.  On the other hand, 452 
advanced process control (APC) allows dynamic control of the process to achieve a 453 
desired output (Huang et al., 2021).  AI/ML techniques such as neural networks, with 454 
real-time process data as inputs, can be used to implement APC.  These methods can 455 

 
spirit of FDA’s recent engagement through the Quality Metrics Feedback Program and CDER’s Emerging 
Technology Program, FDA has been able to solicit valuable feedback demonstrated by industry 
interactions on several AI/ML use cases in the pharmaceutical manufacturing space, such as optimal risk-
based supply chain modeling, business forecasting, process optimization, application of natural language 
processing (NLP) algorithms for complaints reduction, use of predictive analytics for non-conformance 
(NC) reduction, and corrective and preventive action (CAPA) effectiveness. 
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also be used to develop process controls that can predict whether a process is 456 
performing under a state of control by using AI/ML tools in combination with real-time 457 
sensor data, including, in conjunction with smart monitoring of production lines, to 458 
improve existing manufacturing line efficiency and output.  In the near term, APC 459 
approaches that combine physics and chemistry knowledge with AI/ML techniques are 460 
expected to be increasingly adopted and have already been reported by several 461 
pharmaceutical manufacturers (National Academies of Sciences, 2021).  In these APC 462 
applications, high quality model inputs inform process understanding and, model 463 
structure. These robust inputs, when combined with data-driven modeling, allow 464 
derivation of model parameters.  These models leverage data required for model 465 
development while improving model robustness.   466 
 467 
3.  Smart Monitoring and Maintenance 468 
 469 
Manufacturing processes can be automated and monitored in real time, leading to more 470 
efficient inventory management with shorter lead times and increased production 471 
output, without impacting product quality.  AI/ML methods can be used to monitor 472 
equipment and detect deviations from normal performance that can trigger maintenance 473 
activities, thus reducing process downtime.  Another example is the use of computer 474 
vision-based quality control that uses images (e.g., images of packaging, labels, or 475 
glass vials) that are analyzed by AI/ML-based software to detect deviations and to 476 
ensure images match the requirements of a given quality attribute of a product.  477 
Augmenting human visual inspection of drug products and packaging with such AI/ML-478 
based methods can improve the accuracy and efficiency of visual inspection controls. 479 
 480 
4.  Trend Monitoring 481 
 482 
AI/ML can be used in many ways to make manufacturing more effective and efficient 483 
with faster output, less waste, more informed decision-making, and enhanced quality 484 
control.  Current practice for the analysis of deviations in the process is primarily done 485 
by quality personnel and relevant subject matter experts.  AI/ML could be utilized to 486 
assist in examination of deviation reports that mostly contain large volumes of data or 487 
text to analyze manufacturing-related deviation trends, cluster problem areas, and 488 
prioritize areas for proactive continual improvement.  This offers the advantage of 489 
expediting the process of identifying root causes, as solely manual review of deviation 490 
trends can be very time-consuming.  AI/ML methods integrated with process 491 
performance (Ppk) and process capability (Cpk) metrics can be used to proactively 492 
monitor manufacturing operations for trends and out-of-control events, and predict 493 
thresholds for triggering CAPA effectiveness evaluations. 494 
 495 
F. FDA Experience with AI/ML for Drug Development 496 
 497 
FDA recognizes the increased use of AI/ML throughout the drug development life cycle 498 
and its potential to accelerate the development of safe and effective drugs.  AI/ML is 499 
increasingly integrated in areas where FDA is actively engaged, including clinical trial 500 
design, DHTs, and RWD analytics.  Over the last few years, FDA has seen a rapid 501 
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growth in the number of submissions that reference AI/ML.  Submissions across drug 502 
and biological product applications that include AI/ML have increased over the last few 503 
years to more than 100 submissions in 2021 (Q. Liu et al., 2022).  These submissions 504 
cut across a range of therapeutic areas, and the uses of AI/ML within the submissions 505 
cover the many different areas of the drug development process highlighted in this 506 
section, from drug discovery and clinical trial enrichment to endpoint assessment and 507 
postmarket safety surveillance. Inclusion of AI/ML in the clinical development/research 508 
phase represents the most common stage for AI/ML uses in submissions.   509 
 510 
One of the ways FDA has been supporting the development of innovative and robust 511 
AI/ML is through the establishment of the CDER AI Steering Committee (AISC), which 512 
coordinates efforts around AI/ML uses across therapeutic development. Leveraging its 513 
commitment to advancing innovative approaches and promoting collaborative efforts 514 
across the Agency, CDRH, including the DHCoE, have provided consults for drug 515 
submissions that involve AI/ML, and are developing a framework for AI/ML-based 516 
devices, including predetermined change control plans for devices incorporating 517 
AI/ML,14 as well as a foundation for Good Machine Learning Practices for medical 518 
device development.15  In addition, FDA has organized various workshops16,17 and held 519 
a Patient Engagement Advisory Committee (PEAC) meeting on DHT and AI/ML-related 520 
topics18 and has fostered regulatory science research, including on robustness, user-521 
centered transparency, and bias identification and management, through external 522 
academic and clinical partnerships to evaluate the safety and effectiveness of emerging 523 
AI/ML products.19 524 
 525 
Additionally, CDER has developed the Innovative Science and Technology Approaches 526 
for New Drugs (ISTAND) Pilot Program, which is designed to expand drug 527 
development tool (DDT) types included in the DDT qualification programs, including 528 
tools that leverage DHTs.  Applications of AI/ML may represent novel DDTs or could be 529 
used to aid in the interpretation and analysis of traditional DDTs (such as biomarkers 530 
or clinical outcome assessments), potentially speeding novel therapeutics to patients 531 

 
14 Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-
Based Software as a Medical Device (SaMD) – Discussion Paper and Request for Feedback, April 2019. 
https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-
Learning-Discussion-Paper.pdf 
15 Good Machine Learning Practice for Medical Device Development: Guiding Principles, October 2021. 
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-
medical-device-development-guiding-principles 
16 See the Virtual Public Workshop – Transparency of Artificial Intelligence/Machine Learning-enabled 
Medical Devices, October 14, 2021. https://www.fda.gov/medical-devices/workshops-conferences-
medical-devices/virtual-public-workshop-transparency-artificial-intelligencemachine-learning-enabled-
medical-devices 
17 See the Public Workshop – Evolving Role of Artificial Intelligence in Radiological Imaging, February 
25–26, 2020. https://www.fda.gov/medical-devices/workshops-conferences-medical-devices/public-
workshop-evolving-role-artificial-intelligence-radiological-imaging-02252020-02262020  
18 See the Patient Engagement Advisory Committee Meeting Announcement, October 22, 2020. 
https://www.fda.gov/advisory-committees/advisory-committee-calendar/october-22-2020-patient-
engagement-advisory-committee-meeting-announcement-10222020-10222020  
19 See CERSI research projects, October 2022. https://www.fda.gov/science-research/advancing-
regulatory-science/cersi-research-projects  
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by enhancing the evidence available for decision-making.20  In the area of model-532 
informed drug development (MIDD), FDA’s CDER and CBER have established a MIDD 533 
Pilot Program to facilitate the development and application of exposure-based, 534 
biological, and statistical models derived from nonclinical and clinical data sources.21  In 535 
the context of MIDD, AI/ML could be employed to help improve clinical trial simulations, 536 
optimize dose selection or estimations, or enhance predictive or mechanistic safety 537 
evaluations.    538 
 539 
In the area of postmarket safety surveillance, the FDA’s Sentinel Initiative, including 540 
CDER’s Sentinel System,22 CBER’s Biologics Effectiveness and Safety (BEST) 541 
system,23 and CDRH’s National Evaluation System for health Technology (NEST)24 542 
efforts, are exploring AI/ML approaches to improve existing systems.  The FDA outlined 543 
its goals for using linked claims and EHR data supported by advanced analytics in the 544 
5-year Sentinel System strategic plan.25  The Sentinel System Innovation Center has 545 
outlined a four-pronged approach to implement this plan by incorporating emerging data 546 
science innovations and EHR data for medical product safety surveillance:  (1) data 547 
infrastructure, (2) feature engineering, (3) causal inference, and (4) detection analytics 548 
(Desai et al., 2021).  Examples of AI/ML applications in this approach include natural 549 
language processing (NLP) and automated feature extraction from unstructured EHR 550 
clinical notes for computable phenotyping and improved confounding adjustment from 551 
EHR-based variables using advanced statistical and ML approaches, such as 552 
algorithms created to enhance performance or “Super Learner” and targeted maximum 553 
likelihood estimation (Naimi & Balzer, 2018). 554 
 555 
CBER’s BEST system is designed to provide better data sources, methods, tools, 556 
expertise, and infrastructure to conduct surveillance and epidemiological studies.26  Part 557 
of this program is an effort to use AI/ML methods to analyze EHRs to predict or better 558 
understand adverse events associated with the use of biological products and other 559 
products that CBER regulates.  This work may also enhance FDA’s understanding of 560 
the use of AI/ML methods for generating real-world evidence about product efficacy.   561 
 562 
CDER is also exploring the application of AI to enhance the evaluation of ICSRs 563 
submitted to the FDA Adverse Event Reporting System (FAERS) (Ball & Dal Pan, 564 
2022).  The Information Visualization Platform (InfoViP) was developed with AI/ML to 565 

 
20 See the guidance for industry and FDA staff Qualification Process for Drug Development Tools 
(November 2020). https://www.fda.gov/media/133511/download    
21 See the Model-Informed Drug Development Paired Meeting Program, October 2022. 
https://www.fda.gov/drugs/development-resources/model-informed-drug-development-pilot-program  
22 See FDA’s Sentinel Initiative, December 2022. https://www.fda.gov/safety/fdas-sentinel-initiative 
23 See the CBER Biologics Effectiveness and Safety (BEST) System, March 2022. 
https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/cber-biologics-effectiveness-
and-safety-best-system 
24 See the National Evaluation System for health Technology (NEST), October 2019. 
https://www.fda.gov/about-fda/cdrh-reports/national-evaluation-system-health-technology-nest  
25 See the FDA Sentinel System Five-Year Strategy, January 2019. 
https://www.fda.gov/media/120333/download  
26 See the CBER BEST System, March 2022. https://www.fda.gov/vaccines-blood-biologics/safety-
availability-biologics/cber-biologics-effectiveness-and-safety-best-system 
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detect duplicate ICSRs, classify ICSRs by level of information quality, and derive 566 
visualization of the timeline of clinical events to aid in analysis of reported adverse 567 
events (Kreimeyer et al., 2022; Kreimeyer et al., 2021; Spiker et al., 2020).  AI/ML 568 
methods have been investigated to automate the identification of adverse events in drug 569 
product labeling to support safety reviewers in the triaging of ICSRs to facilitate the 570 
identification of unknown or unexpected safety issues (Bayer et al., 2021; Ly et al., 571 
2018).  Another AI-based tool that focuses on drug product labeling and is currently in 572 
use is the Computerized Labeling Assessment Tool (CLAT), which serves to automate 573 
the review of label and labeling (e.g., prescribing information, carton and container 574 
labeling).  NLP and ML are also being explored to classify free-text narratives in FAERS 575 
ICSRs into structured medical dictionary medication error terminologies to support the 576 
human review of coding quality. Additionally, through the FDA Quality Metrics Reporting 577 
Program,27 CDER’s Emerging Technology Program, and CBER’s Advanced 578 
Technologies Team (CATT) Program,28  FDA has been able to engage industry and 579 
gain valuable feedback on AI/ML use cases in pharmaceutical manufacturing.                      580 
 581 
The FDA also utilizes mechanisms such as a Broad Agency Announcement to solicit 582 
extramural proposals that address emerging regulatory science priorities, including 583 
leveraging external expertise and infrastructure to provide insight on the methods used 584 
to integrate and evaluate AI/ML in drug development.   585 
 586 
III.  Considerations for the Use of AI/ML in Drug Development  587 
 588 
As shown in Section II, AI/ML has been applied to a broad range of drug development 589 
activities and continues to evolve.  The use of AI/ML has the potential to accelerate the 590 
drug development process and make clinical trials safer and more efficient.  However, it 591 
is important to assess whether the use of AI/ML introduces specific risks and harms.  592 
For example, AI/ML algorithms have the potential to amplify errors and preexisting 593 
biases present in underlying data sources and, when the findings are extrapolated 594 
outside of the testing environment, raise concerns related to generalizability and ethical 595 
considerations.  Additionally, an AI/ML system may exhibit limited explainability due to 596 
its underlying complexity or may not be fully transparent for proprietary reasons.  These 597 
concerns have resulted in a focus on developing standards for trustworthy AI that 598 
address specific characteristics in areas such as explainability, reliability, privacy, 599 
safety, security, and bias mitigation.  This section begins with an overview of 600 
considerations and good practices for the general application of AI/ML and ends with 601 
questions to solicit feedback from stakeholders on these considerations and to further 602 
identify potential good practices in the context of drug development.  This will aid FDA in 603 
further identifying opportunities and challenges with utilizing AI/ML throughout the drug 604 
development process. 605 
 606 

 
27 See the Quality Metrics for Drug Manufacturing, October 2022. 
https://www.fda.gov/drugs/pharmaceutical-quality-resources/quality-metrics-drug-manufacturing  
28 See the CBER Advanced Technologies Team (CATT) Program, June 27, 2019. 
https://www.fda.gov/vaccines-blood-biologics/industry-biologics/cber-advanced-technologies-team-catt 
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A. Overarching Standards and Practices for the Use of AI/ML  607 
 608 
There has been an increased commitment by the Federal Government and the 609 
international community to facilitate AI innovation and adoption, which includes 610 
promoting trustworthy and ethical AI  (Exec. Order No. 13859, Maintaining American 611 
Leadership in Artificial Intelligence, February 11, 2019; Exec. Order No. 13960, 612 
Promoting the Use of Trustworthy Artificial Intelligence in the Federal Government, 613 
December 3, 2020; Lander & Nelson, October 22, 2021; Notice of Request for 614 
Information on Public and Private Sector Uses of Biometric Technologies, October 8, 615 
2021; Organisation for Economic Co-operation and Development, 2019; Vought, 2020).  616 
As a result, efforts for the development of cross-sector and sector-specific standards to 617 
facilitate the technological advancement of AI have rapidly increased in both domestic 618 
and international forums.  For example, in August 2019, the National Institute for 619 
Standards and Technology (NIST) released “U.S. Leadership in AI: A Plan for Federal 620 
Engagement in Developing Technical Standards and Related Tools” to help ensure the 621 
use of technical standards and to advance innovation, trust, and confidence in the use 622 
of AI (National Institute of Standards and Technology, 2019).  The plan identified 623 
several areas of focus for AI standards development, including data and knowledge, 624 
performance testing and reporting methodology, risk management, and trustworthiness, 625 
among others.  Other standards organizations, such as the International Organization 626 
for Standardization (ISO), the Institute of Electrical and Electronics Engineers (IEEE), 627 
and the International Electrotechnical Commission (IEC), are also developing relevant 628 
AI/ML standards and work products addressing fundamental issues of data quality, 629 
explainability, and performance, in addition to examining applications that are specific to 630 
certain industries.  The Verification and Validation (V&V 40) risk-informed credibility 631 
assessment framework was initially developed by the American Society of Mechanical 632 
Engineers (ASME) for the assessment of credibility of computational models used for 633 
medical devices (American Society of Mechanical Engineers, 2018) and was later 634 
adopted into model-informed drug development29 (Kuemmel et al., 2020; Viceconti et 635 
al., 2021).  As AI/ML is also used for computational models, the V&V 40 framework 636 
potentially serves to inform whether the AI/ML model is credible for use in drug 637 
development.30  The V&V 40 Standard, which is not specific to AI/ML and does not 638 
specify activities or define criteria required to establish model credibility for a particular 639 
context of use or application, has been adapted for medical devices and for model-640 
informed drug development.31,32 641 

 
29 Promoting Innovation in Medical Product Assessment: A Risk-based Framework for Evaluating 
Computational Models for Regulatory Decision-Making, October 2020. https://www.fda.gov/drugs/news-
events-human-drugs/promoting-innovation-medical-product-assessment-risk-based-framework-
evaluating-computational-models  
30 A V&V 70 Subcommittee has been established for Verification and Validation of Machine Learning. 
31 See the draft guidance for industry and FDA staff Assessing the Credibility of Computational Modelling 
Simulation in Medical Device Submissions (December 2021). When final, this guidance will represent 
FDA’s current thinking on this topic.  https://www.fda.gov/media/154985/download  
32 Promoting Innovation in Medical Product Assessment: A Risk-based Framework for Evaluating 
Computational Models for Regulatory Decision-Making, October 2020. https://www.fda.gov/drugs/news-
events-human-drugs/promoting-innovation-medical-product-assessment-risk-based-framework-
evaluating-computational-models  
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 642 
In addition to the V&V 40 Standard for evaluating the predictive capability of 643 
computational models for medical devices, FDA, Health Canada, and the United 644 
Kingdom’s Medicines and Healthcare products Regulatory Agency (MHRA) jointly 645 
published 10 guiding principles to inform the development of Good Machine Learning 646 
Practices (GMLP) for medical devices that use AI/ML.33  The guiding principles include 647 
adopting a total product life cycle approach in which multidisciplinary expertise is 648 
leveraged throughout product development, with an in-depth understanding of how the 649 
model is integrated into the clinical workflow.  The principles also emphasize the 650 
importance of adequate representation  within the clinical study population to manage 651 
bias, improve generalizability, and provide sufficient transparency with clear and 652 
essential information, such as the product’s intended use and indications, the data used 653 
to test and train the model, and known limitations.  Finally, these GMLP highlight the 654 
importance of monitoring deployed models for performance while managing the risk of 655 
model retraining.  FDA’s CDRH had previously discussed the role of GMLP for medical 656 
devices, and in 2019 issued a proposed framework for modifications to AI/ML-based 657 
SaMD.  The framework proposed a predetermined change control plan mechanism—658 
whereby a sponsor can proactively specify intended modifications to device software 659 
incorporating AI/ML and the methods that will be used to ensure their safety and 660 
effectiveness—thereby laying the foundation for AI/ML-enabled devices with improved 661 
capacity for adaptation.34 662 
 663 
Although the standards and practices described in this section were not tailored 664 
specifically for drug development, the utility and applicability of these standards to drug 665 
development and the development of medical devices intended to be used with drugs, 666 
will be explored to ensure alignment and consistency.  667 
 668 
B. Discussion of Considerations and Practices for AI/ML in Drug Development  669 
 670 
Informed by the diverse applications of AI/ML in drug development (see Section II), 671 
FDA is considering approaches to provide regulatory clarity around the use of AI/ML in 672 
drug development, supported by an expanding body of knowledge and a clear 673 
appreciation of the opportunities and challenges with utilizing AI/ML in drug 674 
development.  While certain standards and practices outlined in Section III.A can 675 
potentially be adapted to address the use of AI/ML in the context of drug development, 676 
the use of AI/ML in drug development may raise specific challenges that could highlight 677 
additional considerations.  As noted above, this document is not FDA guidance or policy 678 
and does not endorse any specific approaches for the use of AI/ML in drug 679 
development.  However, the feedback and future discussions with stakeholders can 680 
help inform future regulatory activities.    681 

 
33 Good Machine Learning Practice for Medical Device Development: Guiding Principles, October 2021. 
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-
medical-device-development-guiding-principles 
34 Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-
Based Software as a Medical Device (SaMD) – Discussion Paper and Request for Feedback, April 2019. 
https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-
Learning-Discussion-Paper.pdf  
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 682 
Adapting the overarching principles of the General Accountability Office AI 683 
accountability framework35 below, FDA’s CDER, CBER, CDRH, including DHCoE, aim 684 
to initiate a discussion with stakeholders and solicit feedback on three key areas in the 685 
context of AI/ML in drug development:  686 
 687 
(1) human-led governance, accountability, and transparency;  688 
 689 
(2) quality, reliability, and representativeness of data; and  690 
 691 
(3) model development, performance, monitoring, and validation. 692 
 693 
In each of these areas, a risk-based approach could include measures commensurate 694 
with the level of risk posed by the specific context of use for AI/ML.  695 
 696 

(1) Human-led governance, accountability, and transparency 
 

Human-led AI/ML governance can help ensure adherence to legal and ethical values, 
where accountability and transparency are essential for the development of 
trustworthy AI.  Such governance and clear accountability may extend across the 
spectrum of planning, development, use, modification, and discontinuation (as 
applicable) of AI/ML in the drug development process.  
 
As part of governance, a risk management plan that considers the context of use may 
be applied to identify and mitigate risks.  This approach can help guide the level of 
documentation, transparency, and explainability, with tracking and recording of key 
steps and decisions, including the rationale for any deviations and procedures that 
enable vigilant oversight and auditing.  Transparency and documentation can provide 
critical insight on the initial planning, development, function, and any modifications of 
the AI/ML in the specific context of use, while explainability can provide 
accompanying evidence or reason for the outputs.  
 
Questions: 
 

 In what specific use cases or applications of AI/ML in drug development are 
there the greatest need for additional regulatory clarity? 
 

 What does transparency mean in the use of AI/ML in drug development (for 
example, transparency could be considered as the degree to which appropriate 
information about the AI/ML model—including its use, development, 

 
35 See Artificial Intelligence: An Accountability Framework for Federal Agencies and Other Entities (June 
2021).  https://www.gao.gov/assets/gao-21-519sp.pdf   
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performance, and, when available, logic—is clearly communicated to 
regulators and/or other stakeholders)?36 
 

 In your experience, what are the main barriers and facilitators of transparency 
with AI/ML used during the drug development process (and in what context)? 

 
 What are some of the good practices utilized by stakeholders for providing risk-

based, meaningful human involvement when AI/ML is being utilized in drug 
development?  

 
 What processes are in place to enhance and enable traceability and 

auditability?  
 

 How are pre-specification activities managed, and changes captured and 
monitored, to ensure the safe and effective use of AI/ML in drug development?  
 

(2) Quality, reliability, and representativeness of data 
 
AI/ML is particularly sensitive to the attributes or characteristics of the data used for 
training, testing, and validation.  Although not unique to AI/ML, missing data, bias, and 
data drift are typically important considerations.  Ensuring data quality, reliability, and 
that the data are fit for use (i.e., relevant for the specific intended use and population) 
can be critical.  Potential data-related issues to consider include:   
 

Bias:  AI/ML can potentially amplify preexisting biases that exist in the underlying 
input data.  NIST published a document characterizing three categories of bias 
(human, systemic, and statistical/computational) and “how they may occur in the 
commission, design, development, and deployment of AI technologies that can be 
used to generate predictions, recommendations, or decisions (e.g., algorithmic 
decision systems), and how AI systems may create societal harms.”37   
 
Integrity:  The completeness, consistency, and accuracy of data.38 
 
Privacy and security:  The protection and privacy of data, linked to data 
classifications and the technical features of the system. 
 
Provenance:  Record trail that accounts for the origin of a piece of data (in a 
database, document, or repository) together with an explanation of how and why it 
got to the present place.39  Provenance describes “the metadata, or extra 

 
36 Adapted from ISO/IEC JTC1/SC42 DIS 25059 (draft).  
https://www.iso.org/standard/80655.html?browse=tc  
37 NIST Special Publication 1270, March 2022.  https://doi.org/10.6028/NIST.SP.1270 
38 For additional considerations related to data integrity see the guidance for industry Data Integrity and 
Compliance with Drug CGMP (December 2018).  https://www.fda.gov/media/119267/download 
39 Encyclopedia of Database Systems, definition of data provenance.  
https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-39940-9_1305 
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information about data, that can help answer questions such as who created the 
data and when.”40 
 
Relevance:  Adequate data are available and are appropriate for the intended use. 

 
Replicability:  Obtaining consistent results across studies aimed at answering the 
same question, each of which has obtained its own data.41  It is important to clarify 
data access early in the process. 
 
Reproducibility:  Obtaining consistent results using the same input data, 
computational steps, methods and code, and conditions of analysis42 (while not 
confirming validity, the transparency required to demonstrate reproducibility 
permits evaluation of the validity of design and operational decisions (S. V. Wang 
et al., 2017)). 
 
Representativeness:  Confidence that a sample from which evidence is generated 
is sufficiently similar to the intended population.  In the context of patient 
experience data, representativeness includes the extent to which the elicited 
experiences, perspectives, needs, and priorities of the sample are sufficiently 
similar to those of the intended patient population.43 

 
Questions: 
 

 What additional data considerations exist for AI/ML in the drug development 
process? 
 

 What practices are developers, manufacturers, and other stakeholders 
currently utilizing to help assure the integrity of AI/ML or to address issues, 
such as bias, missing data, and other data quality considerations, for the use of 
AI/ML in drug development?   

 
 What are some of the key practices utilized by stakeholders to help ensure 

data privacy and security? 
 

 What are some of the key practices utilized by stakeholders to help address 
issues of reproducibility and replicability? 

 
 What processes are developers using for bias identification and management? 

 
40 21st Century Cures Act: Interoperability, Information Blocking, and the ONC Health IT Certification 
Program (March 2019). https://www.federalregister.gov/documents/2019/03/04/2019-02224/21st-century-
cures-act-interoperability-information-blocking-and-the-onc-health-it-certification  
41 Ibid. 
42 National Academies of Sciences, Engineering, and Medicine, 2019, Reproducibility and Replicability in 
Science.  https://doi.org/10.17226/25303 
43 See discussion document for Patient-focused Drug Development Public Workshop Collecting 
Comprehensive and Representative Input, December 2017.  
https://www.fda.gov/media/109179/download  



 

21 

 
(3) Model development, performance, monitoring, and validation 

 
The use of the model may be important to consider in evaluating AI/ML model 
development and performance, including through practices of pre-specification steps 
and clear documentation of criteria for developing and assessing models.  It may also 
be important to consider the model risk and credibility; model risk drives the selection 
of credibility goals and activities.44  Model risk is determined by two factors, which are 
shaped by the context of use:  model influence (the weight of the model in the totality 
of evidence for a specific decision) and decision consequence (the potential 
consequences of a wrong decision).   
 
In balancing performance and explainability, it may be important to consider the 
complexity of the AI/ML model.  In situations where complex models (e.g., artificial 
neural network models) are determined to have similar performance, there may be 
overall advantages to selecting the more traditional and parsimonious (i.e., fewer 
parameters) model.   
 
It may also be important to monitor and document monitoring efforts of the AI/ML 
model to ensure it is reliable, relevant, and consistent over time.  This includes 
documentation of the results of monitoring and any corrective action taken to ensure 
that the AI/ML produces intended results.  Subsequent assessments (e.g., postmarket 
safety monitoring, surveillance) can provide valuable feedback on processes and real-
world model performance.  Real-world model performance includes applications that 
may be supported by collection and monitoring of RWD (e.g., electronic health 
records, product and disease registries).  Potential re-training based on real-world 
performance could provide important insights to model performance, and following 
such re-training, it may be important to monitor and document the AI/ML model to 
appropriately manage risks. 
 
Data considerations also include providing the details of the training dataset utilized to 
develop the AI/ML model, along with the performance, when employing independent, 
external testing data to support verification and validation (“external validity”).  It is 
generally important for data of sufficient quality for the particular context of use to be 
representative of the population where the AI/ML method will be utilized.  It is 
important to help ensure AI/ML models are validated to produce results that are 
credible for the model’s use.  Credibility activities include verification of the software 
code and calculations, validation of the model, and evaluation of the applicability of 

 
44 Credibility refers to trust in the predictive capability of a computational model for a particular context of 
use (Kuemmel et al., 2020).  This includes steps to document performance and approaches to measure 
uncertainty at the component level (e.g., model and non-level components, including metrics and 
assessing performance and outcome of each component) and system level (e.g., methods for 
assessment, performance metrics, and outcomes), where feasible.  Demonstration of credibility often 
includes a risk-based approach, where uses presenting the highest risk generally require the greatest 
standard of evidence, with a gradient of evidence needed based on the associated risk (i.e., informing 
early-stage drug development for non-serious medical condition versus evaluating drug safety and 
effectiveness for critical medical condition).   
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validation assessments to the context of use.  These activities include considerations 
of measuring the level of uncertainty of the model predictions.  Upon completion of 
credibility activities, an assessment can be made to determine whether the model is 
sufficiently credible for its use and whether the model may be acceptable for a given 
regulatory purpose.  
  
Questions: 
 

 What are some examples of current tools, processes, approaches, and best 
practices being used by stakeholders for: 
 
- Documenting the development and performance of AI/ML models that can 

be applied in the context of drug development (e.g., CONSORT-AI (Liu et 
al., 2020) and SPIRIT-AI (Cruz Rivera et al., 2020))? 
 

- Selecting model types and algorithms for a given context of use? 
 
- Determining when to use specific approaches for validating models and 

measuring performance in a given context of use (e.g., selecting relevant 
success criteria and performance measures)? 
 

- Evaluating transparency and explainability and increasing model 
transparency?  
 

- Addressing issues of accuracy and explainability (e.g., scenarios where 
models may provide increased accuracy, while having limitations in 
explainability)? 
 

- Selecting open-source AI software for AI/ML model development?  What 
are considerations when using open-source AI software?  
 

- The use of RWD performance in monitoring AI/ML?   
 

 What practices and documentation are being used to inform and record data 
source selection and inclusion or exclusion criteria? 
 

 In what context of use are stakeholders addressing explainability, and how 
have you balanced considerations of performance and explainability?  

 
 What approaches are being used to document the assessment of uncertainty 

in model predictions, and how is uncertainty being communicated?  What 
methods and standards should be developed to help support the assessment 
of uncertainty? 

 697 
As outlined above, many of the overarching principles and standards related to the 698 
characteristics of trustworthy AI can help inform considerations or key practice areas for 699 
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the application of AI/ML in the context of drug development.  In addition to meeting 700 
current requirements to support regulatory decision-making regarding a drug’s safety 701 
and effectiveness, the use of AI/ML in drug development raises challenges related to 702 
human-led AI/ML governance, accountability, and transparency; data considerations; 703 
and model development, performance, monitoring, and validation.  Transparency and 704 
documentation across the entire product life cycle can help build trust in the use of 705 
AI/ML.  In this regard, it may be important to consider pre-specification and 706 
documentation of the purpose or question of interest, context of use, risk, and 707 
development of AI/ML.  While not unique to the use of AI/ML in drug development, there 708 
are also a broad range of data quality, relevance, and reliability-related considerations.  709 
Related to the area of model development, performance, monitoring, and validation, the 710 
V&V 40 risk-informed credibility assessment framework may be a helpful guide when 711 
considering the specific use for AI/ML.  In general, use of a risk-based approach may 712 
guide the level of evidence and record keeping needed for the verification and validation 713 
of AI/ML models for a specific context of use.  Engagement with the FDA early in the 714 
process can also help inform and address these considerations.   715 
 716 
IV.  Next Steps: Engagement and Collaboration  717 
 718 
The release of this initial discussion paper is part of a broader effort to communicate 719 
with a range of stakeholders and to explore the relevant considerations for the use of 720 
AI/ML in the development of human drugs and biological products.  Coupled with this 721 
document, FDA has included a series of questions for feedback, and a workshop with 722 
stakeholders is planned to provide an opportunity for further engagement.  The FDA will 723 
also provide several other mechanisms to engage with stakeholders, sponsors, and 724 
developers on this topic, and these can be utilized to address questions before 725 
conducting a study that utilizes AI/ML.  In addition to formal meetings where these 726 
methods can be discussed, the Critical Path Innovation Meetings (CPIM),45 ISTAND 727 
Pilot Program,46 Emerging Technology Program,47 and Real-World Evidence Program48 728 
meetings are examples of additional avenues for communicating and discussing a 729 
relevant AI/ML methodology or technology and improving efficiency and quality in drug 730 
development.  Additionally, communication and engagement with patients and the 731 
public regarding considerations for AI/ML in drug development is critical to ensure 732 
patient-centered approaches and policies. 733 
 734 
Building on this discussion paper, FDA will continue to solicit feedback and engage a 735 
broad group of stakeholders to further discuss considerations for utilizing AI/ML 736 
throughout the drug development life cycle.  These discussions and future 737 

 
45 See CPIM, November 11, 2022. https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-
entities-and-new-therapeutic-biological-products/critical-path-innovation-meetings-cpim  
46 See the ISTAND Pilot Program, February 10, 2021. https://www.fda.gov/drugs/drug-development-tool-
ddt-qualification-programs/innovative-science-and-technology-approaches-new-drugs-istand-pilot-
program  
47 See Emerging Technology Program, February 22, 2022. https://www.fda.gov/about-fda/center-drug-
evaluation-and-research-cder/emerging-technology-program  
48 See Framework for FDA’s Real World Evidence Program, April 14, 2020. 
https:/fda.gov/media/120060/download   
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collaborations with stakeholders may provide a foundation for a future framework or 738 
guidance.    739 
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Glossary 740 
 741 
Accuracy:  The level of agreement between the measured value and the true value of 742 
the clinical event or characteristic. 743 
 744 
Artificial Intelligence (AI):  A branch of computer science, statistics, and engineering 745 
that uses algorithms or models to perform tasks and exhibit behaviors such as learning, 746 
making decisions, and making predictions.49 747 
 748 
Biomarker:  A defined characteristic that is measured as an indicator of normal 749 
biological processes, pathogenic processes, or biological responses to an exposure or 750 
intervention, including therapeutic interventions.  Biomarkers may include molecular, 751 
histologic, radiographic, or physiologic characteristics.  A biomarker is not a measure of 752 
how an individual feels, functions, or survives.50  753 
 754 
Clinical Outcome Assessment (COA):  A measure that describes or reflects how a 755 
patient feels, functions, or survives.  There are four types of COAs: patient-reported 756 
outcome, observer-reported outcome, clinician-reported outcome, and performance 757 
outcome.51  758 
 759 
Context of Use:  A statement that fully and clearly describes the way AI/ML is to be 760 
used and the drug development-related purpose of the use.52 761 
 762 
Controlled Terminology:  A finite set of values (e.g., codes, text, numeric) that 763 
represent the only allowed values for a data item.  Generally, controlled terminology 764 
standards specify the key concepts that are represented as definitions, preferred terms, 765 
synonyms, and code systems.53 766 
 767 
Decentralized Clinical Trial:  A clinical investigation where some or all of the trial-768 
related activities occur at a location separate from the investigator’s location.54  769 
 770 
Digital Health Technology (DHT):  A system that uses computing platforms, 771 
connectivity, software, and/or sensors for health care and related uses.  These 772 
technologies span a wide range of uses, from applications in general wellness to 773 
applications as a medical device.  They include technologies intended for use as a 774 

 
49 See IMDRF/AIMD WG/N67 Machine Learning-enabled Medical Devices: Key Terms and Definitions, 
final document, May 6, 2022.  https://www.imdrf.org/documents/machine-learning-enabled-medical-
devices-key-terms-and-definitions  
50 See BEST (Biomarkers, EndpointS, and other Tools) Resource Glossary, 2016. 
https://www.ncbi.nlm.nih.gov/books/NBK338448 
51 See Clinical Outcome Assessment (COA), December 2020. https://www.fda.gov/about-fda/clinical-
outcome-assessment-coa-frequently-asked-questions  
52 CDISC Glossary, 2022. https://evs.nci.nih.gov/ftp1/CDISC/Glossary/CDISC%20Glossary.html   
53 Ibid.    
54 See the draft guidance for industry, investigators, and other stakeholders Digital Health Technologies 
for Remote Data Acquisition in Clinical Investigations (December 2021). When final, this guidance will 
represent FDA’s current thinking on this topic.  https://www.fda.gov/media/155022/download 
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medical product, in a medical product, or as an adjunct to other medical products 775 
(devices, drugs, and biologics).  They may also be used to develop or study medical 776 
products. Data captured by DHTs can often be transmitted directly to investigators, 777 
sponsors, and/or other authorized parties, with the capability to maintain blinding or 778 
masking when appropriate. The ability to transmit data remotely increases opportunities 779 
for patients to participate in clinical investigations at locations remote from the 780 
investigator’s site.55. 781 
 782 
Digital Twins: An integrated multi-physics, multiscale, probabilistic simulation of a 783 
complex system that uses the best available data, sensors, and models to mirror the 784 
behavior of its corresponding twin. A fully developed digital twin consists of a physical 785 
component (e.g., unit operations), a virtual component, and automated data 786 
communications between the two. The development and application of digital twins are 787 
now being extended to manufacturing and complex products to assess sensitivities of 788 
material attributes and process parameters, reliability of control strategies, and 789 
effectiveness of mitigation plans for potential disturbances.56 790 
 791 
Drug Development Tool (DDT):  A biomarker, COA, or any other method, material, or 792 
measure determined to aid drug development and regulatory review.  Animal models 793 
developed to be used for product development under the Animal Rule57 have been 794 
determined by FDA to be DDTs under section 507 of the FD&C Act.58 795 
 796 
Endpoint:  A precisely defined variable intended to reflect an outcome of interest that is 797 
statistically analyzed to address a particular research question.  A precise definition of 798 
an endpoint typically specifies the type of assessments made, the timing of those 799 
assessments, the assessment tools used, and possibly other details, as applicable, 800 
such as how multiple assessments within an individual are to be combined.59 801 
 802 
Machine Learning (ML):  A subset of AI that allows ML models to be developed by ML 803 
training algorithms through analysis of data, without being explicitly programmed.60 804 
 805 
Natural Language Processing (NLP):  The branch of computer science, specifically 806 
the branch of AI, concerned with giving computers the ability to understand text and 807 
spoken words in much the same way human beings can.61 808 

 
55 Ibid. 
56 See Modeling & Simulation at FDA, November 16, 2022. https://www.fda.gov/science-research/about-
science-research-fda/modeling-simulation-fda  
57 See Animal Rule Approvals, June 2022. https://www.fda.gov/drugs/nda-and-bla-approvals/animal-rule-
approvals  
58 See the guidance for industry and FDA staff Qualification Process for Drug Development Tools 
(November 2020). https://www.fda.gov/media/133511/download 
59 See BEST (Biomarkers, EndpointS, and other Tools) Resource Glossary, 2016. 
https://www.ncbi.nlm.nih.gov/books/NBK338448 
60 See IMDRF/AIMD WG/N67 Machine Learning-enabled Medical Devices: Key Terms and Definitions, 
final document, May 6, 2022. https://www.imdrf.org/documents/machine-learning-enabled-medical-
devices-key-terms-and-definitions 
61 “What is natural language processing?”  Accessed September 8, 2022.  
https://www.ibm.com/cloud/learn/natural-language-processing#toc-what-is-na-jLju4DjE 
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 809 
Neural Network:  A commonly used form of AI/ML that is used for categorization 810 
applications and has been loosely likened to the way that neurons in the brain process 811 
signals.  Neural networks typically consist of at least three layers of neurons:  input layer 812 
(which receives information), hidden layer (responsible for extracting patterns and 813 
conducting the internal processing), and output layer (produces and presents the final 814 
network output).62  815 
 816 
Real-World Data (RWD):  The data relating to patient health status and/or the delivery 817 
of health care routinely collected from a variety of sources.  Examples of RWD include 818 
data derived from electronic health records (EHRs); medical claims and billing data; 819 
data from product and disease registries; patient-generated data, including from in-820 
home-use settings; and data gathered from other sources that can inform on health 821 
status, such as mobile devices.63  822 
 823 
Real-World Evidence (RWE):  The clinical evidence about the usage and potential 824 
benefits or risks of a medical product derived from analysis of RWD.  RWD sources 825 
(e.g., registries, collections of EHRs, administrative and medical claims databases) can 826 
be used for data collection and, in certain cases, to develop analysis infrastructure to 827 
support many types of study designs to develop RWE, including, but not limited to, 828 
randomized trials (e.g., large simple trials, pragmatic clinical trials) and observational 829 
studies (prospective or retrospective).64  830 
 831 
Recurrent Neural Network:  A type of artificial neural network that uses sequential 832 
data or time series data to exhibit temporal dynamic behavior.  These algorithms are 833 
commonly used for ordinal or temporal problems, such as language translation, NLP, 834 
speech recognition, and image captioning.65  835 

 
62 See the Executive Summary for the Patient Engagement Advisory Committee Meeting:  Artificial 
Intelligence and Machine Learning in Medical Devices, October 22, 2020. 
https://www.fda.gov/media/142998/download  
63 See the draft guidance for industry, investigators, and other stakeholders Real-World Data: Assessing 
Electronic Health Records and Medical Claims Data to Support Regulatory Decision-Making for Drug and 
Biological Products (September 2021). https://www.fda.gov/media/152503/download 
64 Ibid. 
65 Adapted from https://www.ibm.com/cloud/learn/recurrent-neural-networks  
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